» Articles » PMID: 8161187

Comparative Biochemical and Genetic Analysis of Naphthalene Degradation Among Pseudomonas Stutzeri Strains

Overview
Date 1994 Mar 1
PMID 8161187
Citations 32
Authors
Affiliations
Soon will be listed here.
Abstract

Of a 49-strain collection of Pseudomonas stutzeri species, 11 isolates were able to degrade naphthalene and 1 isolate was able to use m- and p-toluate as sole carbon and energy sources. Of these 12 strains, 10 shared a highly homologous set of naphthalene catabolic genes, even though they belong to four different genomovars. These genes differed from those present in plasmid NAH7. In only one of these degraders could a plasmid-encoded pathway be demonstrated, and a chromosome-encoded pathway is proposed for the remaining strains. meta cleavage of catechol was only observed in those strains able to metabolize alkyl derivatives of catechol.

Citing Articles

Expression, purification and crystallization of a novel metagenome-derived salicylaldehyde dehydrogenase from Alpine soil.

Dandare S, Hakansson M, Svensson L, Timson D, Allen C Acta Crystallogr F Struct Biol Commun. 2022; 78(Pt 4):161-169.

PMID: 35400668 PMC: 8996149. DOI: 10.1107/S2053230X22002345.


Metagenomics and Quantitative Stable Isotope Probing Offer Insights into Metabolism of Polycyclic Aromatic Hydrocarbon Degraders in Chronically Polluted Seawater.

Sieradzki E, Morando M, Fuhrman J mSystems. 2021; 6(3).

PMID: 33975968 PMC: 8125074. DOI: 10.1128/mSystems.00245-21.


Uncovering Competitive and Restorative Effects of Macro- and Micronutrients on Sodium Benzoate Biodegradation.

Zaveri P, Iyer A, Patel R, Munshi N Front Microbiol. 2021; 12:634753.

PMID: 33815319 PMC: 8009979. DOI: 10.3389/fmicb.2021.634753.


Mobile Genetic Elements in Pseudomonas stutzeri.

de Sousa L Curr Microbiol. 2019; 77(2):179-184.

PMID: 31754823 DOI: 10.1007/s00284-019-01812-7.


Genomic Analysis of sp. Strain SCT, an Iodate-Reducing Bacterium Isolated from Marine Sediment, Reveals a Possible Use for Bioremediation.

Harada M, Ito K, Nakajima N, Yamamura S, Tomita M, Suzuki H G3 (Bethesda). 2019; 9(5):1321-1329.

PMID: 30910818 PMC: 6505155. DOI: 10.1534/g3.118.200978.


References
1.
Wheatcroft R, Williams P . Rapid methods for the study of both stable and unstable plasmids in Pseudomonas. J Gen Microbiol. 1981; 124(2):433-7. DOI: 10.1099/00221287-124-2-433. View

2.
Lind E, Ursing J . Clinical strains of Enterobacter agglomerans (synonyms: Erwinia herbicola, Erwinia milletiae) identified by DNA-DNA-hybridization. Acta Pathol Microbiol Immunol Scand B. 1986; 94(4):205-13. DOI: 10.1111/j.1699-0463.1986.tb03043.x. View

3.
Garcia-Valdes E, Cozar E, Rotger R, Lalucat J, Ursing J . New naphthalene-degrading marine Pseudomonas strains. Appl Environ Microbiol. 1988; 54(10):2478-85. PMC: 204290. DOI: 10.1128/aem.54.10.2478-2485.1988. View

4.
Chatfield L, Williams P . Naturally occurring TOL plasmids in Pseudomonas strains carry either two homologous or two nonhomologous catechol 2,3-oxygenase genes. J Bacteriol. 1986; 168(2):878-85. PMC: 213566. DOI: 10.1128/jb.168.2.878-885.1986. View

5.
Hegeman G . Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. I. Synthesis of enzymes by the wild type. J Bacteriol. 1966; 91(3):1140-54. PMC: 316007. DOI: 10.1128/jb.91.3.1140-1154.1966. View