» Articles » PMID: 8144450

Analysis of the Binding Site of the LysR-type Transcriptional Activator TcbR on the TcbR and TcbC Divergent Promoter Sequences

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1994 Apr 1
PMID 8144450
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

The TcbR transcriptional activator protein, which is encoded by the tcbR gene of Pseudomonas sp. strain P51 (J. R. van der Meer, A. C. J. Frijters, J. H. J. Leveau, R. I. L. Eggen, A. J. B. Zehnder, and W. M. de Vos, J. Bacteriol. 173:3700-3708, 1991), was purified from overproducing Escherichia coli cells by using a two-step chromatographic procedure. Subsequent use of TcbR in gel mobility shift assays with progressively shortened portions of a DNA fragment containing the divergent promoter sequences of the tcbR gene and the tcbCDEF operon showed that the direct binding site of TcbR is located between positions -85 to -40 relative to the tcbCDEF transcriptional start site, containing a LysR-type recognition sequence motif (T-N11-A). DNase I footprinting experiments revealed that TcbR protected an area on both strands of the intercistronic region which was actually larger than this binding site (from positions -74 to -24). This stretch of protected DNA was interrupted by a region (positions -52 to -37) which became strongly hypersensitive to DNase I digestion upon addition of TcbR, suggesting that TcbR induces a bend in the DNA at this site.

Citing Articles

Factors that influence the response of the LysR type transcriptional regulators to aromatic compounds.

Lonneborg R, Brzezinski P BMC Biochem. 2011; 12:49.

PMID: 21884597 PMC: 3180648. DOI: 10.1186/1471-2091-12-49.


Chromosomal integration of tcb chlorocatechol degradation pathway genes as a means of expanding the growth substrate range of bacteria to include haloaromatics.

Klemba M, Jakobs B, Wittich R, Pieper D Appl Environ Microbiol. 2000; 66(8):3255-61.

PMID: 10919778 PMC: 92142. DOI: 10.1128/AEM.66.8.3255-3261.2000.


Identification and characterization of the nitrobenzene catabolic plasmids pNB1 and pNB2 in Pseudomonas putida HS12.

Park H, Kim H J Bacteriol. 2000; 182(3):573-80.

PMID: 10633088 PMC: 94317. DOI: 10.1128/JB.182.3.573-580.2000.


Transcriptional activation of the chlorocatechol degradative genes of Ralstonia eutropha NH9.

Ogawa N, McFall S, Klem T, Miyashita K, Chakrabarty A J Bacteriol. 1999; 181(21):6697-705.

PMID: 10542171 PMC: 94134. DOI: 10.1128/JB.181.21.6697-6705.1999.


2-chloromuconate and ClcR-mediated activation of the clcABD operon: in vitro transcriptional and DNase I footprint analyses.

McFall S, Parsek M, Chakrabarty A J Bacteriol. 1997; 179(11):3655-63.

PMID: 9171413 PMC: 179161. DOI: 10.1128/jb.179.11.3655-3663.1997.


References
1.
Bradford M . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72:248-54. DOI: 10.1016/0003-2697(76)90527-3. View

2.
Lindquist S, Lindberg F, Normark S . Binding of the Citrobacter freundii AmpR regulator to a single DNA site provides both autoregulation and activation of the inducible ampC beta-lactamase gene. J Bacteriol. 1989; 171(7):3746-53. PMC: 210120. DOI: 10.1128/jb.171.7.3746-3753.1989. View

3.
Devereux J, Haeberli P, SMITHIES O . A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984; 12(1 Pt 1):387-95. PMC: 321012. DOI: 10.1093/nar/12.1part1.387. View

4.
Pabo C, Sauer R . Protein-DNA recognition. Annu Rev Biochem. 1984; 53:293-321. DOI: 10.1146/annurev.bi.53.070184.001453. View

5.
Vieira J, Messing J . Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985; 33(1):103-19. DOI: 10.1016/0378-1119(85)90120-9. View