» Articles » PMID: 8130329

Femtosecond Energy Transfer and Spectral Equilibration in Bacteriochlorophyll A--protein Antenna Trimers from the Green Bacterium Chlorobium Tepidum

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1994 Jan 1
PMID 8130329
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Femtosecond energy transfer processes in a bacteriochlorophyll a-protein antenna complex from the green sulfur bacterium Chlorobium tepidum have been studied by one-color, two-color, and broadband absorption difference spectroscopy. Much of the spectral excitation equilibration in this antenna occurs with 350 to 450 fs kinetics. The anisotropy decay functions r(t) exhibit two major lifetime components, 100 to 130 fs and 1.7 to 2.0 ps. The short component lifetimes may represent single-step energy transfer kinetics in this antenna; the long component is similar to the anisotropy decay observed in earlier picosecond pump-probe experiments.

Citing Articles

Exciton Lifetime Distributions and Population Dynamics in the FMO Protein Complex from .

Reinot T, Khmelnitskiy A, Kell A, Jassas M, Jankowiak R ACS Omega. 2021; 6(8):5990-6008.

PMID: 33681637 PMC: 7931385. DOI: 10.1021/acsomega.1c00286.


On uncorrelated inter-monomer Förster energy transfer in Fenna-Matthews-Olson complexes.

Kell A, Khmelnitskiy A, Reinot T, Jankowiak R J R Soc Interface. 2019; 16(151):20180882.

PMID: 30958204 PMC: 6408346. DOI: 10.1098/rsif.2018.0882.


Fluorescence-excitation and Emission Spectroscopy on Single FMO Complexes.

Lohner A, Ashraf K, Cogdell R, Kohler J Sci Rep. 2016; 6:31875.

PMID: 27545197 PMC: 4992959. DOI: 10.1038/srep31875.


Low-temperature energy transfer in FMO trimers from the green photosynthetic bacterium Chlorobium tepidum.

Savikhin S, Struve W Photosynth Res. 2013; 48(1-2):271-6.

PMID: 24271308 DOI: 10.1007/BF00041018.


Native electrospray mass spectrometry reveals the nature and stoichiometry of pigments in the FMO photosynthetic antenna protein.

Wen J, Zhang H, Gross M, Blankenship R Biochemistry. 2011; 50(17):3502-11.

PMID: 21449539 PMC: 4000732. DOI: 10.1021/bi200239k.


References
1.
Philipson K, Sauer K . Exciton interaction in a bacteriochlorophyll--protein from Chloropseudomonas ethylica. Absorption and circular dichroism at 77 degrees K. Biochemistry. 1972; 11(10):1880-5. DOI: 10.1021/bi00760a024. View

2.
Olson J . Chlorophyll organization in green photosynthetic bacteria. Biochim Biophys Acta. 1980; 594(1):33-51. DOI: 10.1016/0304-4173(80)90012-9. View

3.
Blankenship R, Cheng P, Causgrove T, Brune D, Wang J . Redox regulation of energy transfer efficiency in antennas of green photosynthetic bacteria. Photochem Photobiol. 1993; 57(1):103-7. DOI: 10.1111/j.1751-1097.1993.tb02263.x. View

4.
Tronrud D, Schmid M, Matthews B . Structure and X-ray amino acid sequence of a bacteriochlorophyll A protein from Prosthecochloris aestuarii refined at 1.9 A resolution. J Mol Biol. 1986; 188(3):443-54. DOI: 10.1016/0022-2836(86)90167-1. View

5.
Taguchi A, Stocker J, Alden R, Causgrove T, Peloquin J, Boxer S . Biochemical characterization and electron-transfer reactions of sym1, a Rhodobacter capsulatus reaction center symmetry mutant which affects the initial electron donor. Biochemistry. 1992; 31(42):10345-55. DOI: 10.1021/bi00157a024. View