» Articles » PMID: 8064810

A Point Mutation in the Human Serum Albumin Gene Results in Familial Dysalbuminaemic Hyperthyroxinaemia

Overview
Journal J Med Genet
Specialty Genetics
Date 1994 May 1
PMID 8064810
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Using DNA samples obtained from two unrelated patients, diagnosed as having familial dysalbuminaemic hyperthyroxinaemia (FDH), exons 1-14 which span the entire coding region of the human serum albumin (HSA) gene were amplified by the polymerase chain reaction. The sequence of each of the 14 DNA fragments was then determined. In each case a point mutation was identified at nucleotide 653 which causes an Arg to His substitution at amino acid position 218. The substitution was confirmed by amino acid sequencing of a mutant peptide resulting from tryptic digestion of the protein. Abnormal affinity of FDH HSA for a thyroxine (T4) analogue was verified by an adaptation of the procedure used in routine free T4 measurement. The location of the mutation is discussed in relation to other studies on the binding properties of HSA.

Citing Articles

Clinical characteristics of familial dysalbuminemic hyperthyroxinemia in Chinese patients and comparison of free thyroxine in three immunoassay methods.

Zhao L, Zhou Y, Huang F, He X, Mei G, Wang S Front Endocrinol (Lausanne). 2023; 14:1102777.

PMID: 36864842 PMC: 9971560. DOI: 10.3389/fendo.2023.1102777.


Familial Dysalbuminemic Hyperthyroxinemia as a Cause for Discordant Thyroid Function Tests.

Ting M, Zhang R, Lim E, Ward B, Wilson S, Walsh J J Endocr Soc. 2021; 5(4):bvab012.

PMID: 33728390 PMC: 7940171. DOI: 10.1210/jendso/bvab012.


Integrative analysis of key candidate genes and signaling pathways in autoimmune thyroid dysfunction related to anti-CTLA-4 therapy by bioinformatics.

Zhang Y, Garofano F, Wu X, Schmid M, Krawitz P, Essler M Invest New Drugs. 2020; 38(6):1717-1729.

PMID: 32500465 PMC: 7575511. DOI: 10.1007/s10637-020-00952-z.


Familial dysalbuminaemic hyperthyroxinaemia interferes with current free thyroid hormone immunoassay methods.

Khoo S, Lyons G, McGowan A, Gurnell M, Oddy S, Visser W Eur J Endocrinol. 2020; 182(6):533-538.

PMID: 32213658 PMC: 7222281. DOI: 10.1530/EJE-19-1021.


Free Thyroxine Concentrations in Sera of Individuals with Familial Dysalbuminemic Hyperthyroxinemia: A Comparison of Three Methods of Measurement.

Refetoff S, Scherberg N, Yuan C, Wu W, Wu Z, McPhaul M Thyroid. 2019; 30(1):37-41.

PMID: 31822224 PMC: 6983746. DOI: 10.1089/thy.2019.0058.


References
1.
Arai K, Ishioka N, Huss K, Madison J, Putnam F . Identical structural changes in inherited albumin variants from different populations. Proc Natl Acad Sci U S A. 1989; 86(2):434-8. PMC: 286484. DOI: 10.1073/pnas.86.2.434. View

2.
Bos O, Remijn J, Fischer M, Wilting J, Janssen L . Location and characterization of the warfarin binding site of human serum albumin. A comparative study of two large fragments. Biochem Pharmacol. 1988; 37(20):3905-9. DOI: 10.1016/0006-2952(88)90072-x. View

3.
Arai K, Madison J, Shimizu A, Putnam F . Point substitutions in albumin genetic variants from Asia. Proc Natl Acad Sci U S A. 1990; 87(1):497-501. PMC: 53291. DOI: 10.1073/pnas.87.1.497. View

4.
Kragh-Hansen U, Minchiotti L, Brennan S, Sugita O . Hormone binding to natural mutants of human serum albumin. Eur J Biochem. 1990; 193(1):169-74. DOI: 10.1111/j.1432-1033.1990.tb19319.x. View

5.
Galliano M, Minchiotti L, Porta F, Rossi A, Ferri G, Madison J . Mutations in genetic variants of human serum albumin found in Italy. Proc Natl Acad Sci U S A. 1990; 87(22):8721-5. PMC: 55031. DOI: 10.1073/pnas.87.22.8721. View