» Articles » PMID: 8041619

The Topology of the Promoter of RNA Polymerase II- and III-transcribed Genes is Modified by the Methylation of 5'-CG-3' Dinucleotides

Overview
Specialty Biochemistry
Date 1994 Jul 11
PMID 8041619
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

In eukaryotic cells, RNA polymerase II- and III-transcribed promoters can be inactivated by sequence-specific methylation. For some promoter motifs, the introduction of 5-methyldeoxycytidine (5-mC) residues has been shown to alter specific promoter motif-protein interactions. To what extent does the presence of 5-mC in promoter or regulatory DNA sequences affect the structure of DNA itself. We have investigated changes in DNA bending in three naturally occurring DNA elements, the late E2A promoter of adenovirus type 2 (Ad2) DNA, one of our main model systems, the VAI (virus-associated) RNA gene of Ad2 DNA, and an Alu element associated with the human angiogenin gene. Alterations in electrophoretic mobility of differently permuted promoter segments in non-denaturing polyacrylamide gels have been used as assay system. In the late E2A promoter of Ad2 DNA, a major and possibly some minor DNA bending motifs exist which cause deviations in electrophoretic mobility in comparison to coelectrophoresed marker DNA fragments devoid of DNA bending motifs. DNA elements have been specifically in vitro methylated by the HpaII (5'-CCGG-3'), the FnuDII (5'-CGCG-3'), or the CpG DNA methyltransferase from Spiroplasma species (M-SssI; 5'-CG-3'). Methylation by one of these DNA methyltransferases influences the electrophoretic mobility of the three tested promoter elements very strikingly, though to different extents. It cannot be predicted whether sequence-specific promoter methylation increases or decreases electrophoretic mobility; these changes have to be experimentally determined. Methylation of the E. coli dcm (5'-CCA/TGG-3') sites in some of the DNA constructs does not make a contribution to mobility changes. It is concluded that sequence-specific methylations in promoter or regulatory DNA elements can alter the bending of DNA very markedly. This parameter may contribute significantly to the silencing of promoters, probably via altering spatial relationships among DNA-bound transcription factors.

Citing Articles

Going Green: The Role of the Green Tea Component EGCG in Chemoprevention.

Schramm L J Carcinog Mutagen. 2013; 4(142):1000142.

PMID: 24077764 PMC: 3783360. DOI: 10.4172/2157-2518.1000142.


Methylation of a single intronic CpG mediates expression silencing of the PMP24 gene in prostate cancer.

Zhang X, Wu M, Xiao H, Lee M, Levin L, Leung Y Prostate. 2010; 70(7):765-76.

PMID: 20054818 PMC: 2857536. DOI: 10.1002/pros.21109.


Chimeric retroviral helper virus and picornavirus IRES sequence to eliminate DNA methylation for improved retroviral packaging cells.

Young W, Link Jr C J Virol. 2000; 74(11):5242-9.

PMID: 10799600 PMC: 110878. DOI: 10.1128/jvi.74.11.5242-5249.2000.


DNA fragments with specific nucleotide sequences in their single-stranded termini exhibit unusual electrophoretic mobilities.

Muiznieks I, DOERFLER W Nucleic Acids Res. 1998; 26(8):1899-905.

PMID: 9518482 PMC: 147506. DOI: 10.1093/nar/26.8.1899.


A fully 5'-CG-3' but not a 5'-CCGG-3' methylated late frog virus 3 promoter retains activity.

Munnes M, Schetter C, Holker I, DOERFLER W J Virol. 1995; 69(4):2240-7.

PMID: 7884871 PMC: 188893. DOI: 10.1128/JVI.69.4.2240-2247.1995.

References
1.
Behe M, Felsenfeld G . Effects of methylation on a synthetic polynucleotide: the B--Z transition in poly(dG-m5dC).poly(dG-m5dC). Proc Natl Acad Sci U S A. 1981; 78(3):1619-23. PMC: 319183. DOI: 10.1073/pnas.78.3.1619. View

2.
Kochanek S, Renz D, DOERFLER W . Differences in the accessibility of methylated and unmethylated DNA to DNase I. Nucleic Acids Res. 1993; 21(25):5843-5. PMC: 310463. DOI: 10.1093/nar/21.25.5843. View

3.
DOERFLER W . DNA methylation--a regulatory signal in eukaryotic gene expression. J Gen Virol. 1981; 57(Pt 1):1-20. DOI: 10.1099/0022-1317-57-1-1. View

4.
Vardimon L, Kressmann A, Cedar H, Maechler M, DOERFLER W . Expression of a cloned adenovirus gene is inhibited by in vitro methylation. Proc Natl Acad Sci U S A. 1982; 79(4):1073-7. PMC: 345902. DOI: 10.1073/pnas.79.4.1073. View

5.
Stein R, Razin A, Cedar H . In vitro methylation of the hamster adenine phosphoribosyltransferase gene inhibits its expression in mouse L cells. Proc Natl Acad Sci U S A. 1982; 79(11):3418-22. PMC: 346431. DOI: 10.1073/pnas.79.11.3418. View