» Articles » PMID: 7919212

MAAP: a Versatile and Universal Tool for Genome Analysis

Overview
Journal Plant Mol Biol
Date 1994 Sep 1
PMID 7919212
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Multiple arbitrary amplicon profiling (MAAP) uses one or more oligonucleotide primers (> or = 5 nt) of arbitrary sequence to initiate DNA amplification and generate characteristic fingerprints from anonymous genomes or DNA templates. MAAP markers can be used in general fingerprinting as well as in mapping applications, either directly or as sequence-characterized amplified regions (SCARs). MAAP profiles can be tailored in the number of monomorphic and/or polymorphic products. For example, multiple endonuclease digestion of template DNA or the use of mini-hairpin primers can enhance detection of polymorphic DNA. Comparison of the expected and actual number of amplification products produced with primers differing in length, sequence and GC content from templates of varying complexity reveal severe departures from theoretical formulations with interesting implications in primer-template interaction. Extensive primer-template mismatching can occur when using templates of low complexity or long primers. Primer annealing and extension appears directed by an 8 nt 3'-terminal primer domain, requires sites with perfect homology to the first 5-6 nt fom the 3' terminus, and involves direct physical interaction between amplicon annealing sites.

Citing Articles

Population admixtures in medaka inferred by multiple arbitrary amplicon sequencing.

Fujimoto S, Yaguchi H, Myosho T, Aoyama H, Sato Y, Kimura R Sci Rep. 2022; 12(1):19989.

PMID: 36411327 PMC: 9678866. DOI: 10.1038/s41598-022-24498-7.


DNA amplification fingerprinting analysis of bermudagrass (Cynodon): genetic relationships between species and interspecific crosses.

Caetano-Anolles G, Callahan L, Williams P, Weaver K, Gresshoff P Theor Appl Genet. 2013; 91(2):228-35.

PMID: 24169768 DOI: 10.1007/BF00220882.


Molecular phylogeny and DNA amplification fingerprinting of Petunia taxa.

Cerny T, Caetano-Anolles G, Trigiano R, Starman T Theor Appl Genet. 2013; 92(8):1009-16.

PMID: 24166629 DOI: 10.1007/BF00224042.


Phenotypic and genotypic comparison of symbiotic and free-living cyanobacteria from a single field site.

West N, Adams D Appl Environ Microbiol. 2006; 63(11):4479-84.

PMID: 16535734 PMC: 1389290. DOI: 10.1128/aem.63.11.4479-4484.1997.


Molecular variation and fingerprinting of Leucadendron cultivars (Proteaceae) by ISSR markers.

Pharmawati M, Yan G, Finnegan P Ann Bot. 2005; 95(7):1163-70.

PMID: 15790586 PMC: 4246899. DOI: 10.1093/aob/mci127.


References
1.
Ohler L, Rose E . Optimization of long-distance PCR using a transposon-based model system. PCR Methods Appl. 1992; 2(1):51-9. DOI: 10.1101/gr.2.1.51. View

2.
Halward T, Stalker T, LaRue E, Kochert G . Use of single-primer DNA amplifications in genetic studies of peanut (Arachis hypogaea L.). Plant Mol Biol. 1992; 18(2):315-25. DOI: 10.1007/BF00034958. View

3.
Xu Y, Clark M, Pehu E . Use of RAPD markers to screen somatic hybrids between Solanum tuberosum and S. brevidens. Plant Cell Rep. 2013; 12(2):107-9. DOI: 10.1007/BF00241944. View

4.
Kolchinsky A, Funke R, Gresshoff P . DAF-amplified fragments can be used as markers for DNA from pulse field gels. Biotechniques. 1993; 14(3):400-3. View

5.
G Williams J, Reiter R, Young R, Scolnik P . Genetic mapping of mutations using phenotypic pools and mapped RAPD markers. Nucleic Acids Res. 1993; 21(11):2697-702. PMC: 309602. DOI: 10.1093/nar/21.11.2697. View