De Los Rios P, Rebeaud M, Goloubinoff P
Cell Stress Chaperones. 2024; 29(6):764-768.
PMID: 39549734
PMC: 11638601.
DOI: 10.1016/j.cstres.2024.11.003.
Rivera-Ramirez A, Salgado-Morales R, Onofre-Lemus J, Garcia-Gomez B, Lanz-Mendoza H, Dantan-Gonzalez E
Toxins (Basel). 2023; 15(11).
PMID: 37999486
PMC: 10674725.
DOI: 10.3390/toxins15110623.
Dupuy E, Van der Verren S, Lin J, Wilson M, Dachsbeck A, Viela F
Cell. 2023; 186(5):1039-1049.e17.
PMID: 36764293
PMC: 10044410.
DOI: 10.1016/j.cell.2023.01.013.
Becker S, Jastrab J, Dhabaria A, Chaton C, Rush J, Korotkov K
Proc Natl Acad Sci U S A. 2019; 116(8):3202-3210.
PMID: 30723150
PMC: 6386731.
DOI: 10.1073/pnas.1819468116.
Marino Gammazza A, Macaluso F, Di Felice V, Cappello F, Barone R
Cells. 2018; 7(12).
PMID: 30469470
PMC: 6315887.
DOI: 10.3390/cells7120224.
Redox Aspects of Chaperones in Cardiac Function.
Penna C, Sorge M, Femmino S, Pagliaro P, Brancaccio M
Front Physiol. 2018; 9:216.
PMID: 29615920
PMC: 5864891.
DOI: 10.3389/fphys.2018.00216.
Unfolding the chaperone story.
Hartl F
Mol Biol Cell. 2017; 28(22):2919-2923.
PMID: 29084909
PMC: 5662250.
DOI: 10.1091/mbc.E17-07-0480.
Directional Force Originating from ATP Hydrolysis Drives the GroEL Conformational Change.
Liu J, Sankar K, Wang Y, Jia K, Jernigan R
Biophys J. 2017; 112(8):1561-1570.
PMID: 28445748
PMC: 5406283.
DOI: 10.1016/j.bpj.2017.03.004.
Replacement of GroEL in Escherichia coli by the Group II Chaperonin from the Archaeon Methanococcus maripaludis.
Shah R, Large A, Ursinus A, Lin B, Gowrinathan P, Martin J
J Bacteriol. 2016; 198(19):2692-700.
PMID: 27432832
PMC: 5019054.
DOI: 10.1128/JB.00317-16.
Differential conformational modulations of MreB folding upon interactions with GroEL/ES and TRiC chaperonin components.
Moparthi S, Carlsson U, Vincentelli R, Jonsson B, Hammarstrom P, Wenger J
Sci Rep. 2016; 6:28386.
PMID: 27328749
PMC: 4916439.
DOI: 10.1038/srep28386.
The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species.
Schmoll M, Dattenbock C, Carreras-Villasenor N, Mendoza-Mendoza A, Tisch D, Aleman M
Microbiol Mol Biol Rev. 2016; 80(1):205-327.
PMID: 26864432
PMC: 4771370.
DOI: 10.1128/MMBR.00040-15.
Engineering a nanopore with co-chaperonin function.
Ho C, Van Meervelt V, Tsai K, De Temmerman P, Mast J, Maglia G
Sci Adv. 2016; 1(11):e1500905.
PMID: 26824063
PMC: 4730846.
DOI: 10.1126/sciadv.1500905.
Mitochondrial Dynamics and Heart Failure.
Knowlton A, Liu T
Compr Physiol. 2016; 6(1):507-26.
PMID: 26756641
PMC: 5695672.
DOI: 10.1002/cphy.c150022.
Structural mechanisms of chaperone mediated protein disaggregation.
Sousa R
Front Mol Biosci. 2015; 1:12.
PMID: 25988153
PMC: 4428496.
DOI: 10.3389/fmolb.2014.00012.
Biochemical characterization of pathogenic mutations in human mitochondrial methionyl-tRNA formyltransferase.
Sinha A, Kohrer C, Weber M, Masuda I, Mootha V, Hou Y
J Biol Chem. 2014; 289(47):32729-41.
PMID: 25288793
PMC: 4239624.
DOI: 10.1074/jbc.M114.610626.
Suppression of amber codons in Caulobacter crescentus by the orthogonal Escherichia coli histidyl-tRNA synthetase/tRNAHis pair.
Ko J, Montero Llopis P, Heinritz J, Jacobs-Wagner C, Soll D
PLoS One. 2014; 8(12):e83630.
PMID: 24386240
PMC: 3875453.
DOI: 10.1371/journal.pone.0083630.
Effects of interactions with the GroEL cavity on protein folding rates.
Sirur A, Best R
Biophys J. 2013; 104(5):1098-106.
PMID: 23473493
PMC: 3870810.
DOI: 10.1016/j.bpj.2013.01.034.
Chaperone-assisted protein folding: the path to discovery from a personal perspective.
Hartl F
Nat Med. 2011; 17(10):1206-10.
PMID: 21989011
DOI: 10.1038/nm.2467.
Rate theories for biologists.
Zhou H
Q Rev Biophys. 2010; 43(2):219-93.
PMID: 20691138
PMC: 3540998.
DOI: 10.1017/S0033583510000120.
Coupled chaperone action in folding and assembly of hexadecameric Rubisco.
Liu C, Young A, Starling-Windhof A, Bracher A, Saschenbrecker S, Rao B
Nature. 2010; 463(7278):197-202.
PMID: 20075914
DOI: 10.1038/nature08651.