» Articles » PMID: 7882986

Structural and Functional Studies of Retroviral RNA Pseudoknots Involved in Ribosomal Frameshifting: Nucleotides at the Junction of the Two Stems Are Important for Efficient Ribosomal Frameshifting

Overview
Journal EMBO J
Date 1995 Feb 15
PMID 7882986
Citations 55
Authors
Affiliations
Soon will be listed here.
Abstract

Ribosomal frameshifting, a translational mechanism used during retroviral replication, involves a directed change in reading frame at a specific site at a defined frequency. Such programmed frameshifting at the mouse mammary tumor virus (MMTV) gag-pro shift site requires two mRNA signals: a heptanucleotide shifty sequence and a pseudoknot structure positioned downstream. Using in vitro translation assays and enzymatic and chemical probes for RNA structure, we have defined features of the pseudoknot that promote efficient frameshifting. Heterologous RNA structures, e.g. a hairpin, a tRNA or a synthetic pseudoknot, substituted downstream of the shifty site fail to promote frameshifting, suggesting that specific features of the MMTV pseudoknot are important for function. Site-directed mutations of the MMTV pseudoknot indicate that the pseudoknot junction, including an unpaired adenine nucleotide between the two stems, provides a specific structural determinant for efficient frameshifting. Pseudoknots derived from other retroviruses (i.e. the feline immunodeficiency virus and the simian retrovirus type 1) also promote frameshifting at the MMTV gag-pro shift site, dependent on the same structure at the junction of the two stems.

Citing Articles

Formation of frameshift-stimulating RNA pseudoknots is facilitated by remodeling of their folding intermediates.

Hsu C, Chang K, Chen Y, Hsieh P, Lee A, Tu J Nucleic Acids Res. 2021; 49(12):6941-6957.

PMID: 34161580 PMC: 8266650. DOI: 10.1093/nar/gkab512.


V, 2.Ribosomal frameshifting in astroviruses.

Brierley I, Vidakovic M Perspect Med Virol. 2020; 9:587-606.

PMID: 32287603 PMC: 7133818. DOI: 10.1016/S0168-7069(03)09035-9.


Monovalent ions modulate the flux through multiple folding pathways of an RNA pseudoknot.

Roca J, Hori N, Baral S, Velmurugu Y, Narayanan R, Narayanan P Proc Natl Acad Sci U S A. 2018; 115(31):E7313-E7322.

PMID: 30012621 PMC: 6077692. DOI: 10.1073/pnas.1717582115.


Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use.

Atkins J, Loughran G, Bhatt P, Firth A, Baranov P Nucleic Acids Res. 2016; 44(15):7007-78.

PMID: 27436286 PMC: 5009743. DOI: 10.1093/nar/gkw530.


Translational readthrough-promoting drugs enhance pseudoknot-mediated suppression of the stop codon at the Moloney murine leukemia virus gag–pol junction.

Green L, Goff S J Gen Virol. 2015; 96(11):3411-3421.

PMID: 26382736 PMC: 5972331. DOI: 10.1099/jgv.0.000284.


References
1.
Mellor J, Fulton S, Dobson M, Wilson W, Kingsman S, Kingsman A . A retrovirus-like strategy for expression of a fusion protein encoded by yeast transposon Ty1. Nature. 1985; 313(5999):243-6. DOI: 10.1038/313243a0. View

2.
ten Dam E, Brierley I, Inglis S, Pleij C . Identification and analysis of the pseudoknot-containing gag-pro ribosomal frameshift signal of simian retrovirus-1. Nucleic Acids Res. 1994; 22(12):2304-10. PMC: 523688. DOI: 10.1093/nar/22.12.2304. View

3.
Pleij C, Rietveld K, Bosch L . A new principle of RNA folding based on pseudoknotting. Nucleic Acids Res. 1985; 13(5):1717-31. PMC: 341107. DOI: 10.1093/nar/13.5.1717. View

4.
Craigen W, Caskey C . Translational frameshifting: where will it stop?. Cell. 1987; 50(1):1-2. DOI: 10.1016/0092-8674(87)90652-0. View

5.
Milligan J, Groebe D, Witherell G, Uhlenbeck O . Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987; 15(21):8783-98. PMC: 306405. DOI: 10.1093/nar/15.21.8783. View