Gating of the Voltage-dependent Chloride Channel CIC-0 by the Permeant Anion
Authors
Affiliations
Chloride channels of the ClC family are important for the control of membrane excitability, cell volume regulation, and possibly transepithelial transport. Although lacking the typical voltage-sensor found in cation channels, gating of ClC channels is clearly voltage-dependent. For the prototype Torpedo channel ClC-0 (refs 11-15) we now show that channel opening is strongly facilitated by external chloride. Other less permeable anions can substitute for chloride with less efficiency. ClC-0 conductance shows an anomalous mole fraction behaviour with Cl-/NO3- mixtures, suggesting a multi-ion pore. Gating shows a similar anomalous behaviour, tightly linking permeation to gating. Eliminating a positive charge at the cytoplasmic end of domain D12 changes kinetics, concentration dependence and halide selectivity of gating, and alters pore properties such as ion selectivity, single-channel conductance and rectification. Taken together, our results strongly suggest that in these channels voltage-dependent gating is conferred by the permeating ion itself, acting as the gating charge.
Insights into CLC-0's Slow-Gating from Intracellular Proton Inhibition.
Kwon H, Fairclough R, Chen T Int J Mol Sci. 2024; 25(14).
PMID: 39063037 PMC: 11276645. DOI: 10.3390/ijms25147796.
Xu M, Neelands T, Powers A, Liu Y, Miller S, Pintilie G Elife. 2024; 12.
PMID: 38345841 PMC: 10942593. DOI: 10.7554/eLife.90648.
Structural basis of pH-dependent activation in a CLC transporter.
Fortea E, Lee S, Chadda R, Argyros Y, Sandal P, Mahoney-Kruszka R Nat Struct Mol Biol. 2024; 31(4):644-656.
PMID: 38279055 PMC: 11262703. DOI: 10.1038/s41594-023-01210-5.
Permeant cations modulate pore dynamics and gating of TRPV1 ion channels.
Garcia-Avila M, Tello-Marmolejo J, Rosenbaum T, Islas L J Gen Physiol. 2023; 156(1).
PMID: 38055192 PMC: 10760480. DOI: 10.1085/jgp.202313422.
Brenes O, Pusch M, Morales F Biomedicines. 2023; 11(10).
PMID: 37892996 PMC: 10604815. DOI: 10.3390/biomedicines11102622.