» Articles » PMID: 779644

Inhibitory Effects of H2 on Growth of Clostridium Cellobioparum

Overview
Date 1976 Mar 1
PMID 779644
Citations 31
Authors
Affiliations
Soon will be listed here.
Abstract

Hydrogen inhibits the growth of hydrogen-producing Clostridium cellobioparum, but not of Escherichia coli or Bacteroides ruminicola. The inhibition is reversible. When hydrogen was removed either by palladium black or by gassing out the tube, glucose utilization increased as did optical density and hydrogen production of C. cellobioparum. Removal of the H2 by methanogenic bacteria favors the growth of C. cellobioparum. Grown with Methanobacterium ruminantium in various concentrations of glucose, the Clostridium reaches a higher optical density and produces more H2 and a higher viable cell count. The cell yield is also higher than in pure culture. In mixed culture, C. cellobioparum produces more acetic acid and less lactic acid, ethanol, and butyric acid than in pure culture. The significance of this metabolic shift and hydrogen utilization in methanogenesis is discussed.

Citing Articles

Reversible Hydrogenase Activity Confers Flexibility to Balance Intracellular Redox in .

Kobayashi S, Kato J, Wada K, Takemura K, Kato S, Fujii T Front Microbiol. 2022; 13:897066.

PMID: 35633713 PMC: 9133594. DOI: 10.3389/fmicb.2022.897066.


Metabolic Hydrogen Flows in Rumen Fermentation: Principles and Possibilities of Interventions.

Ungerfeld E Front Microbiol. 2020; 11:589.

PMID: 32351469 PMC: 7174568. DOI: 10.3389/fmicb.2020.00589.


How Can We Define "Optimal Microbiota?": A Comparative Review of Structure and Functions of Microbiota of Animals, Fish, and Plants in Agriculture.

Ikeda-Ohtsubo W, Brugman S, Warden C, Rebel J, Folkerts G, Pieterse C Front Nutr. 2018; 5:90.

PMID: 30333981 PMC: 6176000. DOI: 10.3389/fnut.2018.00090.


Model-based quantification of metabolic interactions from dynamic microbial-community data.

Hanemaaijer M, Olivier B, Roling W, Bruggeman F, Teusink B PLoS One. 2017; 12(3):e0173183.

PMID: 28278266 PMC: 5344373. DOI: 10.1371/journal.pone.0173183.


Illuminating Anaerobic Microbial Community and Cooccurrence Patterns across a Quality Gradient in Chinese Liquor Fermentation Pit Muds.

Hu X, Du H, Ren C, Xu Y Appl Environ Microbiol. 2016; 82(8):2506-15.

PMID: 26896127 PMC: 4959489. DOI: 10.1128/AEM.03409-15.


References
1.
HUNGATE R . Studies on Cellulose Fermentation: I. The Culture and Physiology of an Anaerobic Cellulose-digesting Bacterium. J Bacteriol. 1944; 48(5):499-513. PMC: 374000. DOI: 10.1128/jb.48.5.499-513.1944. View

2.
Ayers W . Phosphorolysis and synthesis of cellobiose by cell extracts from Ruminococcus flavefaciens. J Biol Chem. 1959; 234:2819-22. View

3.
Prins R . ACTION OF CHLORAL HYDRATE ON RUMEN MICROORGANISMS IN VITRO. J Dairy Sci. 1965; 48:991-3. DOI: 10.3168/jds.s0022-0302(65)88376-x. View

4.
MARGHERITA S, HUNGATE R . SEROLOGICAL ANALYSIS OF BUTYRIVIBRIO FROM THE BOVINE RUMEN. J Bacteriol. 1963; 86:855-60. PMC: 278525. DOI: 10.1128/jb.86.4.855-860.1963. View

5.
HUNGATE R . POLYSACCHARIDE STORAGE AND GROWTH EFFICIENCY IN RUMINOCOCCUS ALBUS. J Bacteriol. 1963; 86:848-54. PMC: 278524. DOI: 10.1128/jb.86.4.848-854.1963. View