» Articles » PMID: 7787027

Three-dimensional Structure of Lipid Vesicles Embedded in Vitreous Ice and Investigated by Automated Electron Tomography

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1995 Apr 1
PMID 7787027
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Automated electron tomography is shown to be a suitable means to visualize the shape of phospholipid vesicles embedded in vitrified ice. With a slow-scan charge-coupled device camera as a recording device, the cumulative electron dose needed to record a data set of 60 projections at a magnification of 20,000X can be kept as low as 15 e-/A2 (or 1500 electrons/nm2). The membrane of the three-dimensionally reconstructed vesicles is clearly visible in two-dimensional sections through the three-dimensionally reconstructed volume. Some edges indicating a polygonal shape of the vesicles, frozen from the gel phase, are also clearly recognized. Because of the presently limited tilt angle range (+/- 60 degrees), the upper and lower "caps" of the vesicles (representing about 35% of the surface of the ellipsoidal particles) remain invisible in the three-dimensional reconstruction.

Citing Articles

Practices for running a research-oriented shared cryo-EM facility.

Walsh Jr R, Mayer M, Sun C, Rawson S, Nair R, Sterling S Front Mol Biosci. 2022; 9:960940.

PMID: 36188224 PMC: 9521047. DOI: 10.3389/fmolb.2022.960940.


Coming of Age: Cryo-Electron Tomography as a Versatile Tool to Generate High-Resolution Structures at Cellular/Biological Interfaces.

Wang Z, Zhang Q, Mim C Int J Mol Sci. 2021; 22(12).

PMID: 34201105 PMC: 8228724. DOI: 10.3390/ijms22126177.


Sharing biological data: why, when, and how.

Wilson S, Way G, Bittremieux W, Armache J, Haendel M, Hoffman M FEBS Lett. 2021; 595(7):847-863.

PMID: 33843054 PMC: 10390076. DOI: 10.1002/1873-3468.14067.


Single-molecule 3D imaging of human plasma intermediate-density lipoproteins reveals a polyhedral structure.

Lei D, Yu Y, Kuang Y, Liu J, Krauss R, Ren G Biochim Biophys Acta Mol Cell Biol Lipids. 2018; 1864(3):260-270.

PMID: 30557627 PMC: 6409128. DOI: 10.1016/j.bbalip.2018.12.004.


Morphologies of synaptic protein membrane fusion interfaces.

Gipson P, Fukuda Y, Danev R, Lai Y, Chen D, Baumeister W Proc Natl Acad Sci U S A. 2017; 114(34):9110-9115.

PMID: 28739947 PMC: 5576828. DOI: 10.1073/pnas.1708492114.


References
1.
Lipowsky R . The conformation of membranes. Nature. 1991; 349(6309):475-81. DOI: 10.1038/349475a0. View

2.
Kas J, Sackmann E . Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes. Biophys J. 1991; 60(4):825-44. PMC: 1260134. DOI: 10.1016/S0006-3495(91)82117-8. View

3.
Siegel D, Green W, Talmon Y . The mechanism of lamellar-to-inverted hexagonal phase transitions: a study using temperature-jump cryo-electron microscopy. Biophys J. 1994; 66(2 Pt 1):402-14. PMC: 1275708. DOI: 10.1016/s0006-3495(94)80790-8. View

4.
Frederik P, Stuart M, Bomans P, Busing W . Phospholipid, nature's own slide and cover slip for cryo-electron microscopy. J Microsc. 1989; 153(Pt 1):81-92. DOI: 10.1111/j.1365-2818.1989.tb01469.x. View

5.
Hegerl R, Altbauer A . The "EM" program system. Ultramicroscopy. 1982; 9(1-2):109-16. DOI: 10.1016/0304-3991(82)90233-9. View