» Articles » PMID: 7781021

Resolution of Sensory and Mucoid Glycoconjugates with Terminal Alpha-galactose Residues in the Mucomicrovillar Complex of the Vomeronasal Sensory Epithelium by Dual Confocal Laser Scanning Microscopy

Overview
Journal Cell Tissue Res
Date 1995 May 1
PMID 7781021
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

The organization of the mucomicrovillar complex of the vomeronasal sensory epithelium of adult rats was examined using confocal laser scanning microscopy. In specimens labeled with the FITC-conjugated isolectin B4 of Bandeiraea simplicifolia, which recognizes terminal alpha-galactose sugar residues of glycoconjugates, we demonstrated that the mucomicrovillar complex was composed of islet-like structures with a high-density alpha-galactose core. The mucomicrovillar complex was further resolved into sensory and mucoid components in double-labeling and dual scanning experiments. The sensory component, which consists of the dendritic terminals of olfactory marker protein-immunoreactive vomeronasal receptor neurons, contained cytosolic glycoconjugates with terminal alpha-galactose sugar residues. The extracellular mucoid component consisted of glycoconjugates containing terminal alpha-galactose derived from the glands associated with the vomeronasal organ. These results demonstrated the complex microchemical organization of the sensory and mucoid components of the mucomicrovillar complex.

Citing Articles

Lectin histochemistry of the olfactory mucosa of Korean native cattle, .

Jang S, Kim B, Lee J, Kang S, Kim J, Kim J J Vet Sci. 2022; 23(6):e88.

PMID: 36448434 PMC: 9715387. DOI: 10.4142/jvs.22184.


The vomeronasal system of the newborn capybara: a morphological and immunohistochemical study.

Torres M, Ortiz-Leal I, Villamayor P, Ferreiro A, Rois J, Sanchez-Quinteiro P Sci Rep. 2020; 10(1):13304.

PMID: 32764621 PMC: 7411026. DOI: 10.1038/s41598-020-69994-w.


The vomeronasal organ of wild canids: the fox (Vulpes vulpes) as a model.

Ortiz-Leal I, Torres M, Villamayor P, Lopez-Beceiro A, Sanchez-Quinteiro P J Anat. 2020; 237(5):890-906.

PMID: 32584430 PMC: 7542198. DOI: 10.1111/joa.13254.


Functionally important glycosyltransferase gain and loss during catarrhine primate emergence.

Koike C, Uddin M, Wildman D, Gray E, Trucco M, Starzl T Proc Natl Acad Sci U S A. 2006; 104(2):559-64.

PMID: 17194757 PMC: 1766424. DOI: 10.1073/pnas.0610012104.


The structure of the nasal chemosensory system in squamate reptiles. 2. Lubricatory capacity of the vomeronasal organ.

Rehorek S, Firth B, Hutchinson M J Biosci. 2000; 25(2):181-90.

PMID: 10878859

References
1.
Breer H . Molecular reaction cascades in olfactory signal transduction. J Steroid Biochem Mol Biol. 1991; 39(4B):621-5. DOI: 10.1016/0960-0760(91)90260-c. View

2.
Mieziewska K, van Veen T, Murray J, Aguirre G . Rod and cone specific domains in the interphotoreceptor matrix. J Comp Neurol. 1991; 308(3):371-80. DOI: 10.1002/cne.903080305. View

3.
Farbman A, Margolis F . Olfactory marker protein during ontogeny: immunohistochemical localization. Dev Biol. 1980; 74(1):205-15. DOI: 10.1016/0012-1606(80)90062-7. View

4.
Adams D . Fine structure of the vomeronasal and septal olfactory epithelia and of glandular structures. Microsc Res Tech. 1992; 23(1):86-97. DOI: 10.1002/jemt.1070230108. View

5.
Johnson E, Eller P, Jafek B . An immuno-electron microscopic comparison of olfactory marker protein localization in the supranuclear regions of the rat olfactory epithelium and vomeronasal organ neuroepithelium. Acta Otolaryngol. 1993; 113(6):766-71. DOI: 10.3109/00016489309135898. View