» Articles » PMID: 7766208

Bacterial Reduction of Hexavalent Chromium

Overview
Journal J Ind Microbiol
Date 1995 Feb 1
PMID 7766208
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Cr(VI)-reducing bacteria are widespread and Cr(VI) reduction occurs under both aerobic and anaerobic conditions. Under aerobic conditions, both NADH and endogenous cell reserves may serve as the electron donor for Cr(VI) reduction. Under anaerobic conditions, electron transport systems containing cytochromes appear to be involved in Cr(VI) reduction. High cell densities are necessary to obtain a significant rate of Cr(VI) reduction. Cr(VI) reduction by bacteria may be inhibited by Cr(VI), oxygen, heavy metals, and phenolic compounds. The optimum pH and temperature observed for Cr(VI) reduction generally coincide with the optimal growth conditions of cells. The optimum redox potential for Cr(VI) reduction has not yet been established.

Citing Articles

Anoxygenic phototrophic purple non-sulfur bacteria: tool for bioremediation of hazardous environmental pollutants.

Dhar K, Venkateswarlu K, Megharaj M World J Microbiol Biotechnol. 2023; 39(10):283.

PMID: 37594588 PMC: 10439078. DOI: 10.1007/s11274-023-03729-7.


Influence of electrode potential, pH and NAD concentration on the electrochemical NADH regeneration.

Aamer E, Thoming J, Baune M, Reimer N, Dringen R, Romero M Sci Rep. 2022; 12(1):16380.

PMID: 36180530 PMC: 9525651. DOI: 10.1038/s41598-022-20508-w.


Deriving Soil Quality Criteria of Chromium Based on Species Sensitivity Distribution Methodology.

Liu Y, Zhou Q, Wang Y, Cheng S, Hao W Toxics. 2021; 9(3).

PMID: 33809555 PMC: 7998722. DOI: 10.3390/toxics9030058.


Potential of Marine-Derived Fungi to Remove Hexavalent Chromium Pollutant from Culture Broth.

Lotlikar N, Damare S, Meena R, Linsy P, Mascarenhas B Indian J Microbiol. 2018; 58(2):182-192.

PMID: 29651177 PMC: 5891482. DOI: 10.1007/s12088-018-0719-z.


Cr(VI) reduction and Cr(III) immobilization by resting cells of Pseudomonas aeruginosa CCTCC AB93066: spectroscopic, microscopic, and mass balance analysis.

Kang C, Wu P, Li L, Yu L, Ruan B, Gong B Environ Sci Pollut Res Int. 2017; 24(6):5949-5963.

PMID: 28070813 DOI: 10.1007/s11356-016-8356-8.


References
1.
Lovley D, Phillips E . Reduction of Chromate by Desulfovibrio vulgaris and Its c(3) Cytochrome. Appl Environ Microbiol. 1994; 60(2):726-8. PMC: 201373. DOI: 10.1128/aem.60.2.726-728.1994. View

2.
Lebedeva E, LIALIKOVA N . [Crocoite reduction by a culture of Pseudomonas chromatophila sp. nov]. Mikrobiologiia. 1979; 48(3):517-22. View

3.
KVASNIKOV E, Kliusnikova T, Kasatkina T, Stepaniuk V, Kuberskaia S . [Bacteria reducing chromium in nature and in effluents of industrial plants]. Mikrobiologiia. 1988; 57(4):680-5. View

4.
Shen H, Wang Y . Characterization of enzymatic reduction of hexavalent chromium by Escherichia coli ATCC 33456. Appl Environ Microbiol. 1993; 59(11):3771-7. PMC: 182530. DOI: 10.1128/aem.59.11.3771-3777.1993. View

5.
Yamamoto K, Kato J, Yano T, Ohtake H . Kinetics and modeling of hexavalent chromium reduction in Enterobacter cloacae. Biotechnol Bioeng. 1993; 41(1):129-33. DOI: 10.1002/bit.260410117. View