Cronan J
Proteins. 2023; 92(4):435-448.
PMID: 37997490
PMC: 10932917.
DOI: 10.1002/prot.26642.
Higuchi Y, Kamimura N, Takenami H, Kikuiri Y, Yasuta C, Tanatani K
Appl Environ Microbiol. 2022; 88(16):e0072422.
PMID: 35938864
PMC: 9397112.
DOI: 10.1128/aem.00724-22.
Rincon-Rosales R, Rogel M, Guerrero G, Rincon-Molina C, Lopez-Lopez A, Manzano-Gomez L
Microbiol Resour Announc. 2021; 10(13).
PMID: 33795348
PMC: 8104056.
DOI: 10.1128/MRA.01251-20.
Beckett D
Biochem Soc Trans. 2018; 46(6):1577-1591.
PMID: 30381340
PMC: 7703869.
DOI: 10.1042/BST20180425.
Guillen J, Jones G, Saldana Gutierrez C, Hernandez-Flores J, Cruz Medina J, Valenzuela Soto J
Biomolecules. 2017; 7(1).
PMID: 28117687
PMC: 5372718.
DOI: 10.3390/biom7010006.
The Staphylococcus aureus group II biotin protein ligase BirA is an effective regulator of biotin operon transcription and requires the DNA binding domain for full enzymatic activity.
Henke S, Cronan J
Mol Microbiol. 2016; 102(3):417-429.
PMID: 27445042
PMC: 5116234.
DOI: 10.1111/mmi.13470.
Paracoccus denitrificans possesses two BioR homologs having a role in regulation of biotin metabolism.
Feng Y, Kumar R, Ravcheev D, Zhang H
Microbiologyopen. 2015; 4(4):644-59.
PMID: 26037461
PMC: 4554459.
DOI: 10.1002/mbo3.270.
Successful conversion of the Bacillus subtilis BirA Group II biotin protein ligase into a Group I ligase.
Henke S, Cronan J
PLoS One. 2014; 9(5):e96757.
PMID: 24816803
PMC: 4016012.
DOI: 10.1371/journal.pone.0096757.
Profligate biotin synthesis in α-proteobacteria - a developing or degenerating regulatory system?.
Feng Y, Zhang H, Cronan J
Mol Microbiol. 2013; 88(1):77-92.
PMID: 23387333
PMC: 3608792.
DOI: 10.1111/mmi.12170.
Early evolution of the biotin-dependent carboxylase family.
Lombard J, Moreira D
BMC Evol Biol. 2011; 11:232.
PMID: 21827699
PMC: 3199775.
DOI: 10.1186/1471-2148-11-232.
Peroxisomes are involved in biotin biosynthesis in Aspergillus and Arabidopsis.
Tanabe Y, Maruyama J, Yamaoka S, Yahagi D, Matsuo I, Tsutsumi N
J Biol Chem. 2011; 286(35):30455-30461.
PMID: 21730067
PMC: 3162405.
DOI: 10.1074/jbc.M111.247338.
The switch regulating transcription of the Escherichia coli biotin operon does not require extensive protein-protein interactions.
Solbiati J, Cronan J
Chem Biol. 2010; 17(1):11-7.
PMID: 20142036
PMC: 2819979.
DOI: 10.1016/j.chembiol.2009.12.007.
The origins of 168, W23, and other Bacillus subtilis legacy strains.
Zeigler D, Pragai Z, Rodriguez S, Chevreux B, Muffler A, Albert T
J Bacteriol. 2008; 190(21):6983-95.
PMID: 18723616
PMC: 2580678.
DOI: 10.1128/JB.00722-08.
Expanding the substrate tolerance of biotin ligase through exploration of enzymes from diverse species.
Slavoff S, Chen I, Choi Y, Ting A
J Am Chem Soc. 2008; 130(4):1160-2.
PMID: 18171066
PMC: 3501195.
DOI: 10.1021/ja076655i.
The reacquisition of biotin prototrophy in Saccharomyces cerevisiae involved horizontal gene transfer, gene duplication and gene clustering.
Hall C, Dietrich F
Genetics. 2007; 177(4):2293-307.
PMID: 18073433
PMC: 2219469.
DOI: 10.1534/genetics.107.074963.
Phage display evolution of a peptide substrate for yeast biotin ligase and application to two-color quantum dot labeling of cell surface proteins.
Chen I, Choi Y, Ting A
J Am Chem Soc. 2007; 129(20):6619-25.
PMID: 17472384
PMC: 2629800.
DOI: 10.1021/ja071013g.
Coordinate expression of the acetyl coenzyme A carboxylase genes, accB and accC, is necessary for normal regulation of biotin synthesis in Escherichia coli.
Abdel-Hamid A, Cronan J
J Bacteriol. 2006; 189(2):369-76.
PMID: 17056747
PMC: 1797400.
DOI: 10.1128/JB.01373-06.
RNA expression analysis using an antisense Bacillus subtilis genome array.
Lee J, Zhang S, Saha S, Santa Anna S, Jiang C, Perkins J
J Bacteriol. 2001; 183(24):7371-80.
PMID: 11717296
PMC: 95586.
DOI: 10.1128/JB.183.24.7371-7380.2001.
Oxaloacetate synthesis in the methanarchaeon Methanosarcina barkeri: pyruvate carboxylase genes and a putative Escherichia coli-type bifunctional biotin protein ligase gene (bpl/birA) exhibit a unique organization.
Mukhopadhyay B, Purwantini E, Kreder C, WOLFE R
J Bacteriol. 2001; 183(12):3804-10.
PMID: 11371547
PMC: 95260.
DOI: 10.1128/JB.183.12.3804-3810.2001.
Regulation of the alpha-galactosidase activity in Streptococcus pneumoniae: characterization of the raffinose utilization system.
Rosenow C, Maniar M, Trias J
Genome Res. 1999; 9(12):1189-97.
PMID: 10613841
PMC: 311000.
DOI: 10.1101/gr.9.12.1189.