» Articles » PMID: 7715605

Linear Mitochondrial DNAs from Yeasts: Telomeres with Large Tandem Repetitions

Overview
Journal Mol Gen Genet
Date 1995 Apr 10
PMID 7715605
Citations 41
Authors
Affiliations
Soon will be listed here.
Abstract

The terminal structure of the linear mitochondrial DNA (mtDNA) from the yeast Candida parapsilosis was investigated. This mtDNA, 30 kb long, has symmetrical ends forming inverted terminal repeats. These repeats are made up of a variable number of tandemly repeating units of 738 bp each; the terminal nucleotide corresponds to a precise position within the last repeat unit sequence. The ends had an open structure accessible to enzymes, with a 5' single-stranded extension of about 110 nucleotides. No circular forms were detected in the DNA preparations. Two other unrelated species, Pichia philodendra and Candida salmanticensis also appear to have a linear mtDNA of similar organization. These linear DNAs (which we name Type 2 linear mtDNAs) are distinct from the previously described linear mtDNAs of yeasts whose termini are formed by a closed hairpin loop (Type 1 linear mtDNA). The terminal structure of C. parapsilosis mtDNA is reminiscent of the linear mitochondrial genomes of the ciliate Tetrahymena although, in the latter, the telomeric tandem repeat unit is considerably shorter.

Citing Articles

Bioinformatics advances in eccDNA identification and analysis.

Li F, Ming W, Lu W, Wang Y, Dong X, Bai Y Oncogene. 2024; 43(41):3021-3036.

PMID: 39209966 DOI: 10.1038/s41388-024-03138-6.


Chromosome-level genome assembly of an auxotrophic strain of the pathogenic yeast .

Mutalova S, Hodorova V, Brazdovic F, Cillingova A, Tomaska L, Brejova B Microbiol Resour Announc. 2024; 13(9):e0034724.

PMID: 39083682 PMC: 11385725. DOI: 10.1128/mra.00347-24.


Chromosome-level genome assembly of the yeast Lodderomyces beijingensis reveals the genetic nature of metabolic adaptations and identifies subtelomeres as hotspots for amplification of mating type loci.

Brejova B, Hodorova V, Mutalova S, Cillingova A, Tomaska L, Vinar T DNA Res. 2024; 31(3).

PMID: 38686638 PMC: 11100356. DOI: 10.1093/dnares/dsae014.


Mitochondrial genome diversity across the subphylum Saccharomycotina.

Wolters J, LaBella A, Opulente D, Rokas A, Hittinger C Front Microbiol. 2023; 14:1268944.

PMID: 38075892 PMC: 10701893. DOI: 10.3389/fmicb.2023.1268944.


Demystifying extrachromosomal DNA circles: Categories, biogenesis, and cancer therapeutics.

Wu M, Rai K Comput Struct Biotechnol J. 2022; 20:6011-6022.

PMID: 36382182 PMC: 9647416. DOI: 10.1016/j.csbj.2022.10.033.


References
1.
Ryan R, Grant D, Chiang K, Swift H . Isolation and characterization of mitochondrial DNA from Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1978; 75(7):3268-72. PMC: 392756. DOI: 10.1073/pnas.75.7.3268. View

2.
Dinouel N, Drissi R, Miyakawa I, Sor F, Rousset S, Fukuhara H . Linear mitochondrial DNAs of yeasts: closed-loop structure of the termini and possible linear-circular conversion mechanisms. Mol Cell Biol. 1993; 13(4):2315-23. PMC: 359552. DOI: 10.1128/mcb.13.4.2315-2323.1993. View

3.
Morin G, Cech T . The telomeres of the linear mitochondrial DNA of Tetrahymena thermophila consist of 53 bp tandem repeats. Cell. 1986; 46(6):873-83. DOI: 10.1016/0092-8674(86)90069-3. View

4.
Guelin E, Guerin M, Velours J . Isolation of the ATP synthase subunit 6 and sequence of the mitochondrial ATP6 gene of the yeast Candida parapsilosis. Eur J Biochem. 1991; 197(1):105-11. DOI: 10.1111/j.1432-1033.1991.tb15887.x. View

5.
Goddard J, Cummings D . Structure and replication of mitochondrial DNA from Paramecium aurelia. J Mol Biol. 1975; 97(4):593-609. DOI: 10.1016/s0022-2836(75)80061-1. View