» Articles » PMID: 7680069

Topographic Organization of Corticospinal Projections from the Frontal Lobe: Motor Areas on the Lateral Surface of the Hemisphere

Overview
Journal J Neurosci
Specialty Neurology
Date 1993 Mar 1
PMID 7680069
Citations 168
Authors
Affiliations
Soon will be listed here.
Abstract

We examined the topographic organization of corticospinal neurons in the primary motor cortex and in the two premotor areas on the lateral surface of the hemisphere [i.e., the dorsal premotor area (PMd) and the ventral premotor area (PMv)]. In two macaques, we labeled corticospinal neurons that project beyond T7 or S2 by placing crystals of HRP into the dorsolateral funiculus at these segmental levels. In another seven macaques, we labeled corticospinal neurons that project to specific segmental levels of the spinal cord by injecting the fluorescent tracers fast blue and diamidino yellow into the gray matter of the cervical and lumbosacral segments. In one set of experiments (n = 2), we defined the representations of the arm and leg in each cortical motor area by injecting one of the two fluorescent tracers into lower cervical segments (C7-T1) and the other fluorescent tracer into lower lumbosacral segments (L6-S1) of the same animal. In another set of experiments (n = 5), we defined the representations of distal and proximal parts of the forelimb in each cortical motor area by injecting one of the two fluorescent tracers into lower cervical segments (C7-T1) and the other tracer into upper cervical segments (C2-C4) of the same animal. In the primary motor cortex and the PMd, cortical regions that project to lower cervical segments were largely separate from those that project to lower lumbosacral segments. In the PMv, few neurons were labeled after tracer injections into lower cervical segments or lower lumbosacral segments. However, corticospinal neurons were labeled in the PMv after tracer injections into upper cervical segments and after HRP placement in the dorsolateral funiculus at T7. The region of the PMv that projects to upper cervical segments was separate from that which projects below T7. Cortical regions that project to upper and lower cervical segments of the spinal cord overlapped considerably in the primary motor cortex and in the PMd. Despite this overlap, we found that the regions of the primary motor cortex and PMd that project most densely to upper cervical segments were largely separate from those that project most densely to lower cervical segments. Furthermore, we found two separate regions within area 4 that send corticospinal projections primarily to the lower cervical segments. One of these regions was located within the classical "hand" area of the primary motor cortex. The other was located at the medial edge of arm representation in the primary motor cortex.(ABSTRACT TRUNCATED AT 400 WORDS)

Citing Articles

From non-human to human primates: a translational approach to enhancing resection, safety, and indications in glioma surgery while preserving sensorimotor abilities.

Gambaretti M, Vigano L, Gallo M, Pratelli G, Sciortino T, Gay L Front Integr Neurosci. 2025; 19:1500636.

PMID: 40008262 PMC: 11847902. DOI: 10.3389/fnint.2025.1500636.


Corticospinal and corticoreticulospinal projections have discrete but complementary roles in chronic motor behaviors after stroke.

Taga M, Hong Y, Charalambous C, Raju S, Hayes L, Lin J J Neurophysiol. 2024; 132(6):1917-1936.

PMID: 39503588 PMC: 11687835. DOI: 10.1152/jn.00301.2024.


Differential Modulation of Local Field Potentials in the Primary and Premotor Cortices during Ipsilateral and Contralateral Reach to Grasp in Macaque Monkeys.

Falaki A, Quessy S, Dancause N J Neurosci. 2024; 44(21).

PMID: 38589229 PMC: 11112639. DOI: 10.1523/JNEUROSCI.1161-23.2024.


A cerebro-cerebellar network for learning visuomotor associations.

Sendhilnathan N, Bostan A, Strick P, Goldberg M Nat Commun. 2024; 15(1):2519.

PMID: 38514616 PMC: 10957870. DOI: 10.1038/s41467-024-46281-0.


Evolution, biomechanics, and neurobiology converge to explain selective finger motor control.

Xu J, Mawase F, Schieber M Physiol Rev. 2024; 104(3):983-1020.

PMID: 38385888 PMC: 11380997. DOI: 10.1152/physrev.00030.2023.