Kawaguchi T, Ishibashi Y, Matsuzaki M, Yamagata S, Tani M
Biochem Biophys Rep. 2024; 39:101785.
PMID: 39104838
PMC: 11299556.
DOI: 10.1016/j.bbrep.2024.101785.
Marr R, Moore J, Formby S, Martiniuk J, Hamilton J, Ralli S
G3 (Bethesda). 2023; 13(8).
PMID: 37307358
PMC: 10411583.
DOI: 10.1093/g3journal/jkad130.
Kutyna D, Onetto C, Williams T, Goold H, Paulsen I, Pretorius I
Nat Commun. 2022; 13(1):3628.
PMID: 35750675
PMC: 9232646.
DOI: 10.1038/s41467-022-31305-4.
Maixner F, Sarhan M, Huang K, Tett A, Schoenafinger A, Zingale S
Curr Biol. 2021; 31(23):5149-5162.e6.
PMID: 34648730
PMC: 8660109.
DOI: 10.1016/j.cub.2021.09.031.
Pontes A, Hutzler M, Brito P, Sampaio J
Microorganisms. 2020; 8(6).
PMID: 32549402
PMC: 7356373.
DOI: 10.3390/microorganisms8060903.
Quantitative Trait Nucleotides Impacting the Technological Performances of Industrial Strains.
Peltier E, Friedrich A, Schacherer J, Marullo P
Front Genet. 2019; 10:683.
PMID: 31396264
PMC: 6664092.
DOI: 10.3389/fgene.2019.00683.
Natural Variation in the Multidrug Efflux Pump Underlies Ionic Liquid Tolerance in Yeast.
Higgins D, Young M, Tremaine M, Sardi M, Fletcher J, Agnew M
Genetics. 2018; 210(1):219-234.
PMID: 30045857
PMC: 6116967.
DOI: 10.1534/genetics.118.301161.
Multiple Rounds of Artificial Selection Promote Microbe Secondary Domestication-The Case of Cachaça Yeasts.
Barbosa R, Pontes A, Santos R, Montandon G, de Ponzzes-Gomes C, Morais P
Genome Biol Evol. 2018; 10(8):1939-1955.
PMID: 29982460
PMC: 6101510.
DOI: 10.1093/gbe/evy132.
Adaptation of S. cerevisiae to Fermented Food Environments Reveals Remarkable Genome Plasticity and the Footprints of Domestication.
Legras J, Galeote V, Bigey F, Camarasa C, Marsit S, Nidelet T
Mol Biol Evol. 2018; 35(7):1712-1727.
PMID: 29746697
PMC: 5995190.
DOI: 10.1093/molbev/msy066.
Genetic Polymorphism in Wine Yeasts: Mechanisms and Methods for Its Detection.
Guillamon J, Barrio E
Front Microbiol. 2017; 8:806.
PMID: 28522998
PMC: 5415627.
DOI: 10.3389/fmicb.2017.00806.
Genome Sequence and Analysis of a Stress-Tolerant, Wild-Derived Strain of Saccharomyces cerevisiae Used in Biofuels Research.
Mcilwain S, Peris D, Sardi M, Moskvin O, Zhan F, Myers K
G3 (Bethesda). 2016; 6(6):1757-66.
PMID: 27172212
PMC: 4889671.
DOI: 10.1534/g3.116.029389.
Genome Sequencing and Comparative Analysis of Saccharomyces cerevisiae Strains of the Peterhof Genetic Collection.
Drozdova P, Tarasov O, Matveenko A, Radchenko E, Sopova J, Polev D
PLoS One. 2016; 11(5):e0154722.
PMID: 27152522
PMC: 4859572.
DOI: 10.1371/journal.pone.0154722.
Whole Genome Comparison Reveals High Levels of Inbreeding and Strain Redundancy Across the Spectrum of Commercial Wine Strains of Saccharomyces cerevisiae.
Borneman A, Forgan A, Kolouchova R, Fraser J, Schmidt S
G3 (Bethesda). 2016; 6(4):957-71.
PMID: 26869621
PMC: 4825664.
DOI: 10.1534/g3.115.025692.
Interaction of Piriformospora indica with Azotobacter chroococcum.
Bhuyan S, Bandyopadhyay P, Kumar P, Mishra D, Prasad R, Kumari A
Sci Rep. 2015; 5:13911.
PMID: 26350628
PMC: 4563567.
DOI: 10.1038/srep13911.
Genomic insights into the Saccharomyces sensu stricto complex.
Borneman A, Pretorius I
Genetics. 2015; 199(2):281-91.
PMID: 25657346
PMC: 4317643.
DOI: 10.1534/genetics.114.173633.
Comparative genomics of Saccharomyces cerevisiae natural isolates for bioenergy production.
Wohlbach D, Rovinskiy N, Lewis J, Sardi M, Schackwitz W, Martin J
Genome Biol Evol. 2014; 6(9):2557-66.
PMID: 25364804
PMC: 4202335.
DOI: 10.1093/gbe/evu199.
QTL dissection of Lag phase in wine fermentation reveals a new translocation responsible for Saccharomyces cerevisiae adaptation to sulfite.
Zimmer A, Durand C, Loira N, Durrens P, Sherman D, Marullo P
PLoS One. 2014; 9(1):e86298.
PMID: 24489712
PMC: 3904918.
DOI: 10.1371/journal.pone.0086298.
Whole-genome sequencing of the efficient industrial fuel-ethanol fermentative Saccharomyces cerevisiae strain CAT-1.
Babrzadeh F, Jalili R, Wang C, Shokralla S, Pierce S, Robinson-Mosher A
Mol Genet Genomics. 2012; 287(6):485-94.
PMID: 22562254
DOI: 10.1007/s00438-012-0695-7.
Deciphering the hybridisation history leading to the Lager lineage based on the mosaic genomes of Saccharomyces bayanus strains NBRC1948 and CBS380.
Nguyen H, Legras J, Neuveglise C, Gaillardin C
PLoS One. 2011; 6(10):e25821.
PMID: 21998701
PMC: 3187814.
DOI: 10.1371/journal.pone.0025821.
Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae.
Borneman A, Desany B, Riches D, Affourtit J, Forgan A, Pretorius I
PLoS Genet. 2011; 7(2):e1001287.
PMID: 21304888
PMC: 3033381.
DOI: 10.1371/journal.pgen.1001287.