» Articles » PMID: 7621817

A Potassium Transporter of the Yeast Schwanniomyces Occidentalis Homologous to the Kup System of Escherichia Coli Has a High Concentrative Capacity

Overview
Journal EMBO J
Date 1995 Jul 3
PMID 7621817
Citations 47
Authors
Affiliations
Soon will be listed here.
Abstract

The yeast Schwanniomyces occidentalis has a high-affinity K+ uptake system with a high concentrative capacity, which is able to deplete the external K+ to < 0.03 microM. We have cloned the gene HAK1 of S.occidentalis which complements defective K+ uptake by trk1 and trk1 trk2 mutants of Saccharomyces cerevisiae. When HAK1 was expressed in a trk1 trk2 S.cerevisiae mutant, transport affinities for K+ and other alkali cations resembled those of S.occidentalis. The predicted amino acid sequence of the HAK1 protein shows significant homology with the hydrophobic region of the Kup transporter of Escherichia coli. In S.occidentalis HAK1 expresses in K(+)-limiting conditions. Our data indicate that in K(+)-starved cells the system encoded by HAK1 is the major K+ transporter of S.occidentalis.

Citing Articles

Potassium transporter KUP9 participates in K distribution in roots and leaves under low K stress.

Yamanashi T, Uchiyama T, Saito S, Higashi T, Ikeda H, Kikunaga H Stress Biol. 2023; 2(1):52.

PMID: 37676337 PMC: 10441886. DOI: 10.1007/s44154-022-00074-x.


High-yield α-humulene production in Yarrowia lipolytica from waste cooking oil based on transcriptome analysis and metabolic engineering.

Guo Q, Peng Q, Chen Y, Song P, Ji X, Huang H Microb Cell Fact. 2022; 21(1):271.

PMID: 36566177 PMC: 9790127. DOI: 10.1186/s12934-022-01986-z.


Genome-wide characterization and expression analysis of the HAK gene family in response to abiotic stresses in Medicago.

Li Q, Du W, Tian X, Jiang W, Zhang B, Wang Y BMC Genomics. 2022; 23(1):791.

PMID: 36456911 PMC: 9714174. DOI: 10.1186/s12864-022-09009-2.


Genome-wide identification, characterization and expression analysis of genes and decoding their role in responding to potassium deficiency and abiotic stress in .

Zhao Y, Wang L, Zhao P, Liu Z, Guo S, Li Y PeerJ. 2022; 10:e14034.

PMID: 36168431 PMC: 9509677. DOI: 10.7717/peerj.14034.


Potassium Transporters.

Ruiz-Castilla F, Ruiz Perez F, Ramos-Moreno L, Ramos J Int J Mol Sci. 2022; 23(9).

PMID: 35563275 PMC: 9105532. DOI: 10.3390/ijms23094884.


References
1.
Rodriguez-Navarro A, Ramos J . Dual system for potassium transport in Saccharomyces cerevisiae. J Bacteriol. 1984; 159(3):940-5. PMC: 215750. DOI: 10.1128/jb.159.3.940-945.1984. View

2.
Maathuis F, Sanders D . Mechanism of high-affinity potassium uptake in roots of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1994; 91(20):9272-6. PMC: 44794. DOI: 10.1073/pnas.91.20.9272. View

3.
Benlloch M, Moreno I, Rodriguez-Navarro A . Two modes of rubidium uptake in sunflower plants. Plant Physiol. 1989; 90(3):939-42. PMC: 1061824. DOI: 10.1104/pp.90.3.939. View

4.
Schachtman D, Schroeder J, Lucas W, ANDERSON J, Gaber R . Expression of an inward-rectifying potassium channel by the Arabidopsis KAT1 cDNA. Science. 1994; 258(5088):1654-8. DOI: 10.1126/science.8966547. View

5.
Sherman F . Getting started with yeast. Methods Enzymol. 1991; 194:3-21. DOI: 10.1016/0076-6879(91)94004-v. View