Zuo W, Yin G, Zhang L, Zhang W, Xu R, Wang Y
Synth Syst Biotechnol. 2024; 10(1):49-57.
PMID: 39224149
PMC: 11366860.
DOI: 10.1016/j.synbio.2024.08.003.
Tollis S, Singh J, Palou R, Thattikota Y, Ghazal G, Coulombe-Huntington J
PLoS Biol. 2022; 20(3):e3001548.
PMID: 35239649
PMC: 8893695.
DOI: 10.1371/journal.pbio.3001548.
Huberman L, Wu V, Kowbel D, Lee J, Daum C, Grigoriev I
Proc Natl Acad Sci U S A. 2021; 118(13).
PMID: 33753477
PMC: 8020665.
DOI: 10.1073/pnas.2009501118.
Ronsmans A, Wery M, Szachnowski U, Gautier C, Descrimes M, Dubois E
PLoS Genet. 2019; 15(2):e1007999.
PMID: 30818362
PMC: 6413948.
DOI: 10.1371/journal.pgen.1007999.
Turner S, Ma Q, Ola M, Martinez de San Vicente K, Butler G
mSphere. 2018; 3(2).
PMID: 29564399
PMC: 5853489.
DOI: 10.1128/mSphere.00028-18.
Transcriptional and post-transcriptional regulation of autophagy in the yeast .
Delorme-Axford E, Klionsky D
J Biol Chem. 2018; 293(15):5396-5403.
PMID: 29371397
PMC: 5900762.
DOI: 10.1074/jbc.R117.804641.
Caloric restriction extends yeast chronological lifespan via a mechanism linking cellular aging to cell cycle regulation, maintenance of a quiescent state, entry into a non-quiescent state and survival in the non-quiescent state.
Leonov A, Feldman R, Piano A, Arlia-Ciommo A, Lutchman V, Ahmadi M
Oncotarget. 2017; 8(41):69328-69350.
PMID: 29050207
PMC: 5642482.
DOI: 10.18632/oncotarget.20614.
Diversification of Transcriptional Regulation Determines Subfunctionalization of Paralogous Branched Chain Aminotransferases in the Yeast .
Gonzalez J, Lopez G, Argueta S, Escalera-Fanjul X, El Hafidi M, Campero-Basaldua C
Genetics. 2017; 207(3):975-991.
PMID: 28912343
PMC: 5676234.
DOI: 10.1534/genetics.117.300290.
Multi-omics analysis reveals regulators of the response to nitrogen limitation in Yarrowia lipolytica.
Pomraning K, Kim Y, Nicora C, Chu R, Bredeweg E, Purvine S
BMC Genomics. 2016; 17:138.
PMID: 26911370
PMC: 4766638.
DOI: 10.1186/s12864-016-2471-2.
A high-resolution gene expression atlas of epistasis between gene-specific transcription factors exposes potential mechanisms for genetic interactions.
Sameith K, Amini S, Groot Koerkamp M, van Leenen D, Brok M, Brabers N
BMC Biol. 2015; 13:112.
PMID: 26700642
PMC: 4690272.
DOI: 10.1186/s12915-015-0222-5.
Nuclear Gln3 Import Is Regulated by Nitrogen Catabolite Repression Whereas Export Is Specifically Regulated by Glutamine.
Rai R, Tate J, Shanmuganatham K, Howe M, Nelson D, Cooper T
Genetics. 2015; 201(3):989-1016.
PMID: 26333687
PMC: 4649666.
DOI: 10.1534/genetics.115.177725.
MRC1-dependent scaling of the budding yeast DNA replication timing program.
Koren A, Soifer I, Barkai N
Genome Res. 2010; 20(6):781-90.
PMID: 20219942
PMC: 2877575.
DOI: 10.1101/gr.102764.109.
An analysis of the positional distribution of DNA motifs in promoter regions and its biological relevance.
Casimiro A, Vinga S, Freitas A, Oliveira A
BMC Bioinformatics. 2008; 9:89.
PMID: 18257925
PMC: 2375121.
DOI: 10.1186/1471-2105-9-89.
Global transcriptional and physiological responses of Saccharomyces cerevisiae to ammonium, L-alanine, or L-glutamine limitation.
Usaite R, Patil K, Grotkjaer T, Nielsen J, Regenberg B
Appl Environ Microbiol. 2006; 72(9):6194-203.
PMID: 16957246
PMC: 1563674.
DOI: 10.1128/AEM.00548-06.
Salt-dependent expression of ammonium assimilation genes in the halotolerant yeast, Debaryomyces hansenii.
Guerrero C, Aranda C, DeLuna A, Filetici P, Riego L, Anaya V
Curr Genet. 2005; 47(3):163-71.
PMID: 15756621
DOI: 10.1007/s00294-004-0560-2.
Ammonia regulates VID30 expression and Vid30p function shifts nitrogen metabolism toward glutamate formation especially when Saccharomyces cerevisiae is grown in low concentrations of ammonia.
van der Merwe G, Cooper T, van Vuuren H
J Biol Chem. 2001; 276(31):28659-66.
PMID: 11356843
PMC: 4384459.
DOI: 10.1074/jbc.M102280200.
TOR modulates GCN4-dependent expression of genes turned on by nitrogen limitation.
Valenzuela L, Aranda C, Gonzalez A
J Bacteriol. 2001; 183(7):2331-4.
PMID: 11244074
PMC: 95141.
DOI: 10.1128/JB.183.7.2331-2334.2001.
O2R, a novel regulatory element mediating Rox1p-independent O(2) and unsaturated fatty acid repression of OLE1 in Saccharomyces cerevisiae.
Nakagawa Y, Sugioka S, Kaneko Y, Harashima S
J Bacteriol. 2001; 183(2):745-51.
PMID: 11133970
PMC: 94932.
DOI: 10.1128/JB.183.2.745-751.2001.
Functional domain mapping and subcellular distribution of Dal82p in Saccharomyces cerevisiae.
Scott S, Dorrington R, Svetlov V, Beeser A, Distler M, Cooper T
J Biol Chem. 2000; 275(10):7198-204.
PMID: 10702289
PMC: 4384442.
DOI: 10.1074/jbc.275.10.7198.
Nitrogen catabolite repression in Saccharomyces cerevisiae.
Hofman-Bang J
Mol Biotechnol. 1999; 12(1):35-73.
PMID: 10554772
DOI: 10.1385/MB:12:1:35.