Celona K, Shannon A, Sonderegger D, Yi J, Monroy F, Allender C
PLoS Negl Trop Dis. 2023; 17(2):e0011067.
PMID: 36753522
PMC: 9907805.
DOI: 10.1371/journal.pntd.0011067.
Bzdyl N, Moran C, Bendo J, Sarkar-Tyson M
Virulence. 2022; 13(1):1945-1965.
PMID: 36271712
PMC: 9635556.
DOI: 10.1080/21505594.2022.2139063.
Pumpuang A, Paksanont S, Burtnick M, Brett P, Chantratita N
Infect Immun. 2022; 90(11):e0021422.
PMID: 36226942
PMC: 9670879.
DOI: 10.1128/iai.00214-22.
DeMers H, Nualnoi T, Thorkildson P, Hau D, Hannah E, Green H
Microbiol Spectr. 2022; 10(4):e0076522.
PMID: 35924843
PMC: 9430648.
DOI: 10.1128/spectrum.00765-22.
Schmidt L, Orne C, Shaffer T, Wilson S, Khakhum N, Torres A
Infect Immun. 2022; 90(8):e0022222.
PMID: 35862715
PMC: 9387246.
DOI: 10.1128/iai.00222-22.
Stereoselective Synthesis of β-d-Manno-heptopyranoside via CsCO-Mediated Anomeric -Alkylation: Synthesis of a Tetrasaccharide Repeat Unit of Surface-Layer Glycoprotein.
Meng S, Lakshika Hettiarachchi I, Bhetuwal B, Thapa P, Zhu J
J Org Chem. 2022; 87(10):6588-6600.
PMID: 35537215
PMC: 9166265.
DOI: 10.1021/acs.joc.2c00168.
Interactions Between Pathogenic and the Complement System: A Review of Potential Immune Evasion Mechanisms.
Syed I, Wooten R
Front Cell Infect Microbiol. 2021; 11:701362.
PMID: 34660335
PMC: 8515183.
DOI: 10.3389/fcimb.2021.701362.
An Evolutionary Arms Race Between and Host Immune System: What Do We Know?.
Chomkatekaew C, Boonklang P, Sangphukieo A, Chewapreecha C
Front Microbiol. 2021; 11:612568.
PMID: 33552023
PMC: 7858667.
DOI: 10.3389/fmicb.2020.612568.
Structure-function studies of the C3/C5 epimerases and C4 reductases of the Campylobacter jejuni capsular heptose modification pathways.
Barnawi H, Woodward L, Fava N, Roubakha M, Shaw S, Kubinec C
J Biol Chem. 2021; 296:100352.
PMID: 33524389
PMC: 7949155.
DOI: 10.1016/j.jbc.2021.100352.
Distinct classes and subclasses of antibodies to hemolysin co-regulated protein 1 and O-polysaccharide and correlation with clinical characteristics of melioidosis patients.
Pumpuang A, Phunpang R, Ekchariyawat P, Dulsuk A, Loupha S, Kwawong K
Sci Rep. 2019; 9(1):13972.
PMID: 31562344
PMC: 6764960.
DOI: 10.1038/s41598-019-48828-4.
lptG contributes to changes in membrane permeability and the emergence of multidrug hypersusceptibility in a cystic fibrosis isolate of Pseudomonas aeruginosa.
Harrison L, Fowler R, Abdalhamid B, Selmecki A, Hanson N
Microbiologyopen. 2019; 8(11):e844.
PMID: 30977288
PMC: 6854846.
DOI: 10.1002/mbo3.844.
Caprine humoral response to Burkholderia pseudomallei antigens during acute melioidosis from aerosol exposure.
Yi J, Simpanya M, Settles E, Shannon A, Hernandez K, Pristo L
PLoS Negl Trop Dis. 2019; 13(2):e0006851.
PMID: 30811382
PMC: 6411198.
DOI: 10.1371/journal.pntd.0006851.
Potential targets for next generation antimicrobial glycoconjugate vaccines.
Micoli F, Costantino P, Adamo R
FEMS Microbiol Rev. 2018; 42(3):388-423.
PMID: 29547971
PMC: 5995208.
DOI: 10.1093/femsre/fuy011.
Comprehensive analysis of clinical Burkholderia pseudomallei isolates demonstrates conservation of unique lipid A structure and TLR4-dependent innate immune activation.
Sengyee S, Hwan Yoon S, Paksanont S, Yimthin T, Wuthiekanun V, Limmathurotsakul D
PLoS Negl Trop Dis. 2018; 12(2):e0006287.
PMID: 29474381
PMC: 5842036.
DOI: 10.1371/journal.pntd.0006287.
Antibacterial activity of chitosan against Burkholderia pseudomallei.
Kamjumphol W, Chareonsudjai P, Chareonsudjai S
Microbiologyopen. 2017; 7(1).
PMID: 29178614
PMC: 5822341.
DOI: 10.1002/mbo3.534.
Development of Subunit Vaccines That Provide High-Level Protection and Sterilizing Immunity against Acute Inhalational Melioidosis.
Burtnick M, Shaffer T, Ross B, Muruato L, Sbrana E, DeShazer D
Infect Immun. 2017; 86(1).
PMID: 29109172
PMC: 5736816.
DOI: 10.1128/IAI.00724-17.
Structural characterisation of the capsular polysaccharide expressed by Burkholderia thailandensis strain E555:: wbiI (pKnock-KmR) and assessment of the significance of the 2-O-acetyl group in immune protection.
Bayliss M, Donaldson M, Nepogodiev S, Pergolizzi G, Scott A, Harmer N
Carbohydr Res. 2017; 452:17-24.
PMID: 29024844
PMC: 5697523.
DOI: 10.1016/j.carres.2017.09.011.
Deciphering minimal antigenic epitopes associated with Burkholderia pseudomallei and Burkholderia mallei lipopolysaccharide O-antigens.
Tamigney Kenfack M, Mazur M, Nualnoi T, Shaffer T, Ngassimou A, Bleriot Y
Nat Commun. 2017; 8(1):115.
PMID: 28740137
PMC: 5524647.
DOI: 10.1038/s41467-017-00173-8.
Genome-scale analysis of the genes that contribute to Burkholderia pseudomallei biofilm formation identifies a crucial exopolysaccharide biosynthesis gene cluster.
Borlee G, Plumley B, Martin K, Somprasong N, Mangalea M, Islam M
PLoS Negl Trop Dis. 2017; 11(6):e0005689.
PMID: 28658258
PMC: 5507470.
DOI: 10.1371/journal.pntd.0005689.
An avirulent Burkholderia pseudomallei ∆purM strain with atypical type B LPS: expansion of the toolkit for biosafe studies of melioidosis.
Norris M, Khan M, Schweizer H, Tuanyok A
BMC Microbiol. 2017; 17(1):132.
PMID: 28592242
PMC: 5461690.
DOI: 10.1186/s12866-017-1040-4.