Huang B, Jia Z, Yang X, Cheng C, Liu X, Zhang J
Front Genet. 2022; 13:873869.
PMID: 36118875
PMC: 9479762.
DOI: 10.3389/fgene.2022.873869.
Niu Z, Lai Y, Zhou W, Liu L, Tan S, He G
Mol Genet Genomic Med. 2022; 10(9):e2019.
PMID: 35855543
PMC: 9482389.
DOI: 10.1002/mgg3.2019.
Schirman D, Yakhini Z, Pilpel Y, Dahan O
PLoS Genet. 2021; 17(9):e1009805.
PMID: 34570750
PMC: 8496845.
DOI: 10.1371/journal.pgen.1009805.
Han Y, Wang D, Guo J, Xiong Q, Li P, Zhou Y
Mol Genet Genomic Med. 2020; 8(9):e1366.
PMID: 32588564
PMC: 7507304.
DOI: 10.1002/mgg3.1366.
Tjhung K, Shokhirev M, Horning D, Joyce G
Proc Natl Acad Sci U S A. 2020; 117(6):2906-2913.
PMID: 31988127
PMC: 7022166.
DOI: 10.1073/pnas.1914282117.
Termination of pre-mRNA splicing requires that the ATPase and RNA unwindase Prp43p acts on the catalytic snRNA U6.
Toroney R, Nielsen K, Staley J
Genes Dev. 2019; 33(21-22):1555-1574.
PMID: 31558568
PMC: 6824469.
DOI: 10.1101/gad.328294.119.
Pseudouridines on Trypanosoma brucei spliceosomal small nuclear RNAs and their implication for RNA and protein interactions.
Rajan K, Doniger T, Cohen-Chalamish S, Chen D, Semo O, Aryal S
Nucleic Acids Res. 2019; 47(14):7633-7647.
PMID: 31147702
PMC: 6698659.
DOI: 10.1093/nar/gkz477.
Genome-wide identification and functional analysis of the splicing component SYF2/NTC31/p29 across different plant species.
Tian Y, Chen M, Yang J, Achala H, Gao B, Hao G
Planta. 2018; 249(2):583-600.
PMID: 30317439
DOI: 10.1007/s00425-018-3026-3.
Slow molecular recognition by RNA.
Gleitsman K, Sengupta R, Herschlag D
RNA. 2017; 23(12):1745-1753.
PMID: 28971853
PMC: 5688996.
DOI: 10.1261/rna.062026.117.
A multi-step model for facilitated unwinding of the yeast U4/U6 RNA duplex.
Rodgers M, Didychuk A, Butcher S, Brow D, Hoskins A
Nucleic Acids Res. 2016; 44(22):10912-10928.
PMID: 27484481
PMC: 5159527.
DOI: 10.1093/nar/gkw686.
A protein map of the yeast activated spliceosome as obtained by electron microscopy.
Sun C, Rigo N, Fabrizio P, Kastner B, Luhrmann R
RNA. 2016; 22(9):1427-40.
PMID: 27368340
PMC: 4986897.
DOI: 10.1261/rna.057778.116.
Prp8 retinitis pigmentosa mutants cause defects in the transition between the catalytic steps of splicing.
Mayerle M, Guthrie C
RNA. 2016; 22(5):793-809.
PMID: 26968627
PMC: 4836653.
DOI: 10.1261/rna.055459.115.
Cryo-EM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 Å resolution.
Nguyen T, Galej W, Bai X, Oubridge C, Newman A, Scheres S
Nature. 2016; 530(7590):298-302.
PMID: 26829225
PMC: 4762201.
DOI: 10.1038/nature16940.
A day in the life of the spliceosome.
Matera A, Wang Z
Nat Rev Mol Cell Biol. 2014; 15(2):108-21.
PMID: 24452469
PMC: 4060434.
DOI: 10.1038/nrm3742.
snRNA catalysts in the spliceosome's ancient core.
Madhani H
Cell. 2013; 155(6):1213-5.
PMID: 24315092
PMC: 4162089.
DOI: 10.1016/j.cell.2013.11.022.
The Caenorhabditis elegans gene mfap-1 encodes a nuclear protein that affects alternative splicing.
Ma L, Gao X, Luo J, Huang L, Teng Y, Horvitz H
PLoS Genet. 2012; 8(7):e1002827.
PMID: 22829783
PMC: 3400559.
DOI: 10.1371/journal.pgen.1002827.
Functional roles of protein splicing factors.
Chen H, Cheng S
Biosci Rep. 2012; 32(4):345-59.
PMID: 22762203
PMC: 3392075.
DOI: 10.1042/BSR20120007.
RNA secondary structure mediates alternative 3'ss selection in Saccharomyces cerevisiae.
Plass M, Codony-Servat C, Ferreira P, Vilardell J, Eyras E
RNA. 2012; 18(6):1103-15.
PMID: 22539526
PMC: 3358634.
DOI: 10.1261/rna.030767.111.
Crystal structure of Cwc2 reveals a novel architecture of a multipartite RNA-binding protein.
Schmitzova J, Rasche N, Dybkov O, Kramer K, Fabrizio P, Urlaub H
EMBO J. 2012; 31(9):2222-34.
PMID: 22407296
PMC: 3343462.
DOI: 10.1038/emboj.2012.58.
Cwc2 and its human homologue RBM22 promote an active conformation of the spliceosome catalytic centre.
Rasche N, Dybkov O, Schmitzova J, Akyildiz B, Fabrizio P, Luhrmann R
EMBO J. 2012; 31(6):1591-604.
PMID: 22246180
PMC: 3321175.
DOI: 10.1038/emboj.2011.502.