Rostro-caudal Polarity in the Avian Somite Related to Paraxial Segmentation. A Study on HNK-1, Tenascin and Neurofilament Expression
Overview
Reproductive Medicine
Affiliations
Segmental organization of the vertebrate body is one of the major patterns arising during embryonic development. Somites that play an important role in this process show intrinsic patterns of gene expression and differentiation. The somites become polarized in all three dimensions, rostrocaudal, mediolateral and dorsoventral, the quadrants giving rise to several tissue components. The timing of polarization was studied by means of antibodies against HNK-1, tenascin and neurofilament. Whole mounts and serial sections of quail and chick embryos show that somites are already polarized at the moment of their segregation from the segmental plate. The rostral hemisomite carries the HNK-1 epitope preferentially, while the caudal hemisomite stains more strongly for tenascin. HNK-1-stained areas in the segmental plate strongly relate to the notochordal sheath, suggesting that axial structures determine the fate of paraxial structures. Neural crest cells were only seen to colonize the rostral part of a somite after they had differentiated into HNK-1 positive cells. Their colonization pattern seems to be guided by the segmental organization of the somite. Moreover, this somite organization probably dictates the organization of both sensory and motor fibres converging towards the segmental dorsal root ganglia, justifying a shift in the connections between neural tube and somites. This segmental shift takes place over one quarter of a somite length in a rostral direction.