» Articles » PMID: 7504458

Modulation by Fatty Acids of Ca2+ Fluxes in Sarcoplasmic-reticulum Vesicles

Overview
Journal Biochem J
Specialty Biochemistry
Date 1993 Nov 15
PMID 7504458
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

The fatty acids palmitic (C16:0), stearic (C18:0), arachidic (C20:0) and arachidonic (C20:4) acids inhibit Ca2+ uptake and enhance Ca2+ efflux measured in vesicles derived from the sarcoplasmic reticulum of skeletal muscle. These effects of the fatty acids are impaired by the Ca(2+)-ATPase ligands Mg2+, Ca2+ and K+, and by drugs that block the leakage of Ca2+ through the Ca(2+)-ATPase such as Ruthenium Red, spermine [de Meis (1991) J. Biol. Chem. 266, 5736-5742] and thapsigargin [de Meis and Inesi (1992) FEBS Lett. 299, 33-35].

Citing Articles

Hepatic endoplasmic reticulum calcium fluxes: effect of free fatty acids and KATP channel involvement.

Al-Rawi R, Wang X, McCormick K Biosci Rep. 2021; 41(2).

PMID: 33442738 PMC: 7851409. DOI: 10.1042/BSR20202940.


TRPV4 inhibition attenuates stretch-induced inflammatory cellular responses and lung barrier dysfunction during mechanical ventilation.

Pairet N, Mang S, Fois G, Keck M, Kuhnbach M, Gindele J PLoS One. 2018; 13(4):e0196055.

PMID: 29664963 PMC: 5903668. DOI: 10.1371/journal.pone.0196055.


Prevention of ventilator-induced lung edema by inhalation of nanoparticles releasing ruthenium red.

Jurek S, Hirano-Kobayashi M, Chiang H, Kohane D, Matthews B Am J Respir Cell Mol Biol. 2014; 50(6):1107-17.

PMID: 24405281 PMC: 4068911. DOI: 10.1165/rcmb.2013-0163OC.


Thermal tolerance of contractile function in oxidative skeletal muscle: no protection by antioxidants and reduced tolerance with eicosanoid enzyme inhibition.

Oliver S, Wright V, Parinandi N, Clanton T Am J Physiol Regul Integr Comp Physiol. 2008; 295(5):R1695-705.

PMID: 18768765 PMC: 2584865. DOI: 10.1152/ajpregu.90429.2008.


Arachidonic acid inhibition of muscarinic receptor-mediated nitric oxide production occurs at the level of calcium mobilization in Chinese hamster ovary cells.

Linden D, El-Fakahany E Neurochem Res. 2002; 27(6):441-9.

PMID: 12199147 DOI: 10.1023/a:1019892700049.


References
1.
Beil F, Von Chak D, Hasselbach W . Phosphorylation from inorganic phosphate and ATP synthesis of sarcoplasmic membranes. Eur J Biochem. 1977; 81(1):151-64. DOI: 10.1111/j.1432-1033.1977.tb11936.x. View

2.
Grubmeyer C, PENEFSKY H . The presence of two hydrolytic sites on beef heart mitochondrial adenosine triphosphatase. J Biol Chem. 1981; 256(8):3718-27. View

3.
Chiesi M, Inesi G . The use of quench reagents for resolution of single transport cycles in sarcoplasmic reticulum. J Biol Chem. 1979; 254(20):10370-7. View

4.
Sarzala M, DRABIKOWSKI W . Free fatty acids as a factor modifying properties of fragmented sarcoplasmic reticulum during ageing. Life Sci. 1969; 8(10):477-83. DOI: 10.1016/0024-3205(69)90245-8. View

5.
Eletr S, Inesi G . Phospholipid orientation in sarcoplasmic membranes: spin-label ESR and proton MNR studies. Biochim Biophys Acta. 1972; 282(1):174-9. DOI: 10.1016/0005-2736(72)90321-5. View