Rinne A, Pluteanu F
Biomolecules. 2024; 14(11).
PMID: 39595542
PMC: 11592142.
DOI: 10.3390/biom14111365.
Matsukawa H, Murayama T
Juntendo Iji Zasshi. 2024; 69(3):180-187.
PMID: 38855953
PMC: 11153067.
DOI: 10.14789/jmj.JMJ22-0045-R.
Murzilli S, Serano M, Pietrangelo L, Protasi F, Paolini C
Biology (Basel). 2023; 12(8).
PMID: 37626950
PMC: 10452101.
DOI: 10.3390/biology12081064.
Girolami B, Serano M, Di Fonso A, Paolini C, Pietrangelo L, Protasi F
Int J Mol Sci. 2023; 24(6).
PMID: 36982401
PMC: 10049691.
DOI: 10.3390/ijms24065328.
Protasi F, Pietrangelo L, Boncompagni S
Int J Mol Sci. 2021; 22(12).
PMID: 34201319
PMC: 8228829.
DOI: 10.3390/ijms22126195.
Structure and Function of the Human Ryanodine Receptors and Their Association with Myopathies-Present State, Challenges, and Perspectives.
Bauerova-Hlinkova V, Hajduchova D, Bauer J
Molecules. 2020; 25(18).
PMID: 32899693
PMC: 7570887.
DOI: 10.3390/molecules25184040.
The central domain of cardiac ryanodine receptor governs channel activation, regulation, and stability.
Guo W, Sun B, Estillore J, Wang R, Chen S
J Biol Chem. 2020; 295(46):15622-15635.
PMID: 32878990
PMC: 7667974.
DOI: 10.1074/jbc.RA120.013512.
A chronic high-fat diet exacerbates contractile dysfunction with impaired intracellular Ca release capacity in the skeletal muscle of aged mice.
Eshima H, Tamura Y, Kakehi S, Kakigi R, Hashimoto R, Funai K
J Appl Physiol (1985). 2020; 128(5):1153-1162.
PMID: 32213111
PMC: 7276930.
DOI: 10.1152/japplphysiol.00530.2019.
Regulatory mechanisms of ryanodine receptor/Ca release channel revealed by recent advancements in structural studies.
Ogawa H, Kurebayashi N, Yamazawa T, Murayama T
J Muscle Res Cell Motil. 2020; 42(2):291-304.
PMID: 32040690
PMC: 8332584.
DOI: 10.1007/s10974-020-09575-6.
Ca Channels Mediate Bidirectional Signaling between Sarcolemma and Sarcoplasmic Reticulum in Muscle Cells.
Avila G, de la Rosa J, Monsalvo-Villegas A, Montiel-Jaen M
Cells. 2019; 9(1).
PMID: 31878335
PMC: 7016941.
DOI: 10.3390/cells9010055.
Genetics of cerebral vasospasm.
Ladner T, Zuckerman S, Mocco J
Neurol Res Int. 2013; 2013:291895.
PMID: 23691311
PMC: 3649704.
DOI: 10.1155/2013/291895.
Frog alpha- and beta-ryanodine receptors provide distinct intracellular Ca2+ signals in a myogenic cell line.
Kashiyama T, Murayama T, Suzuki E, Allen P, Ogawa Y
PLoS One. 2010; 5(7):e11526.
PMID: 20634947
PMC: 2902508.
DOI: 10.1371/journal.pone.0011526.
Role of ryanodine receptor subtypes in initiation and formation of calcium sparks in arterial smooth muscle: comparison with striated muscle.
Essin K, Gollasch M
J Biomed Biotechnol. 2009; 2009:135249.
PMID: 20029633
PMC: 2793424.
DOI: 10.1155/2009/135249.
Ryanodine receptor type-1 (RyR1) expression and protein S-nitrosylation pattern in human soleus myofibres following bed rest and exercise countermeasure.
Salanova M, Schiffl G, Rittweger J, Felsenberg D, Blottner D
Histochem Cell Biol. 2008; 130(1):105-18.
PMID: 18283481
DOI: 10.1007/s00418-008-0399-6.
Ca(2+) sparks operated by membrane depolarization require isoform 3 ryanodine receptor channels in skeletal muscle.
Pouvreau S, Royer L, Yi J, Brum G, Meissner G, Rios E
Proc Natl Acad Sci U S A. 2007; 104(12):5235-40.
PMID: 17360329
PMC: 1829292.
DOI: 10.1073/pnas.0700748104.
Sparks and embers of skeletal muscle: the exciting events of contractile activation.
Csernoch L
Pflugers Arch. 2007; 454(6):869-78.
PMID: 17342530
DOI: 10.1007/s00424-007-0244-0.
Advancing age alters the expression of the ryanodine receptor 3 isoform in adult rat superior cervical ganglia.
Vanterpool C, Vanterpool E, Pearce W, Buchholz J
J Appl Physiol (1985). 2006; 101(2):392-400.
PMID: 16645194
PMC: 1569677.
DOI: 10.1152/japplphysiol.00167.2006.
Metabolism of the novel Ca2+-mobilizing messenger nicotinic acid-adenine dinucleotide phosphate via a 2'-specific Ca2+-dependent phosphatase.
Berridge G, Cramer R, Galione A, Patel S
Biochem J. 2002; 365(Pt 1):295-301.
PMID: 11936953
PMC: 1222647.
DOI: 10.1042/BJ20020180.
Molecular basis of Ca(2)+ activation of the mouse cardiac Ca(2)+ release channel (ryanodine receptor).
Li P, Chen S
J Gen Physiol. 2001; 118(1):33-44.
PMID: 11429443
PMC: 2233748.
DOI: 10.1085/jgp.118.1.33.
Unique kinetics of nicotinic acid-adenine dinucleotide phosphate (NAADP) binding enhance the sensitivity of NAADP receptors for their ligand.
Patel S, Churchill G, Galione A
Biochem J. 2000; 352 Pt 3:725-9.
PMID: 11104679
PMC: 1221510.