Villamar Z, Ludvig D, Perreault E
J Neurophysiol. 2022; 129(1):7-16.
PMID: 36475940
PMC: 9799151.
DOI: 10.1152/jn.00171.2022.
Brenner E, de la Malla C, Smeets J
Exp Brain Res. 2022; 241(1):81-104.
PMID: 36371477
PMC: 9870842.
DOI: 10.1007/s00221-022-06503-7.
Dimitriou M
Elife. 2022; 11.
PMID: 35829705
PMC: 9278952.
DOI: 10.7554/eLife.78091.
Berret B, Jean F
PLoS Comput Biol. 2020; 16(2):e1007414.
PMID: 32109941
PMC: 7065824.
DOI: 10.1371/journal.pcbi.1007414.
Logan D, Kiemel T, Jeka J
Front Comput Neurosci. 2017; 10:146.
PMID: 28123365
PMC: 5225107.
DOI: 10.3389/fncom.2016.00146.
Force control in the absence of visual and tactile feedback.
Mugge W, Abbink D, Schouten A, van der Helm F, Arendzen J, Meskers C
Exp Brain Res. 2012; 224(4):635-45.
PMID: 23223780
DOI: 10.1007/s00221-012-3341-z.
System identification of physiological systems using short data segments.
Ludvig D, Perreault E
IEEE Trans Biomed Eng. 2012; 59(12):3541-9.
PMID: 23033429
PMC: 3601444.
DOI: 10.1109/TBME.2012.2220767.
Optimal feedback control and the long-latency stretch response.
Pruszynski J, Scott S
Exp Brain Res. 2012; 218(3):341-59.
PMID: 22370742
DOI: 10.1007/s00221-012-3041-8.
Suppression of proprioceptive feedback control in movement sequences through intermediate targets.
Niu C, Corcos D, Shapiro M
Exp Brain Res. 2011; 216(2):191-201.
PMID: 22071685
DOI: 10.1007/s00221-011-2928-0.
Velocity-based planning of rapid elbow movements expands the control scheme of the equilibrium point hypothesis.
Suzuki M, Yamazaki Y
J Comput Neurosci. 2005; 18(2):131-49.
PMID: 15714266
DOI: 10.1007/s10827-005-6555-2.
The neural control of single degree-of-freedom elbow movements. Effect of starting joint position.
Prodoehl J, Gottlieb G, Corcos D
Exp Brain Res. 2003; 153(1):7-15.
PMID: 14566444
DOI: 10.1007/s00221-003-1564-8.
Identification of physiological systems: estimation of linear time-varying dynamics with non-white inputs and noisy outputs.
Lortie M, Kearney R
Med Biol Eng Comput. 2001; 39(3):381-90.
PMID: 11465895
DOI: 10.1007/BF02345295.
Dependence of elbow viscoelastic behavior on speed and loading in voluntary movements.
Milner T
Exp Brain Res. 1993; 93(1):177-80.
PMID: 8467888
DOI: 10.1007/BF00227793.
Compensation for mechanically unstable loading in voluntary wrist movement.
Milner T, Cloutier C
Exp Brain Res. 1993; 94(3):522-32.
PMID: 8359266
DOI: 10.1007/BF00230210.
Independent control of reflex and volitional EMG modulation during sinusoidal pursuit tracking in humans.
JOHNSON M, Kipnis A, Lee M, Ebner T
Exp Brain Res. 1993; 96(2):347-62.
PMID: 8270027
DOI: 10.1007/BF00227114.
Electromyographic responses to constant position errors imposed during voluntary elbow joint movement in human.
Bennett D
Exp Brain Res. 1993; 95(3):499-508.
PMID: 8224076
DOI: 10.1007/BF00227143.
Torques generated at the human elbow joint in response to constant position errors imposed during voluntary movements.
Bennett D
Exp Brain Res. 1993; 95(3):488-98.
PMID: 8224075
DOI: 10.1007/BF00227142.
Identification of time-varying dynamics of the human triceps surae stretch reflex. II. Rapid imposed movement.
Kirsch R, Kearney R
Exp Brain Res. 1993; 97(1):128-38.
PMID: 8131824
DOI: 10.1007/BF00228823.
Identification of time-varying dynamics of the human triceps surae stretch reflex. I. Rapid isometric contraction.
Kirsch R, Kearney R, MacNeil J
Exp Brain Res. 1993; 97(1):115-27.
PMID: 8131823
DOI: 10.1007/BF00228822.
Optimal control of antagonistic muscle stiffness during voluntary movements.
Lan N, Crago P
Biol Cybern. 1994; 71(2):123-35.
PMID: 8068774
DOI: 10.1007/BF00197315.