» Articles » PMID: 7284553

Time-dependent Absorption Anisotropy and Rotational Diffusion of Proteins in Membranes

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1981 Oct 1
PMID 7284553
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

The decay of flash-induced absorption anisotropy, r(t), of a chromophore in a membrane protein is closely correlated with rotational diffusion of the protein in the membrane. We develop a theory of time-dependent absorption anisotropy which is applicable to both linear chromophores and planar chromophores which have two different absorption moments at right angles to one another. The theory treats two types of rotational diffusion of membrane proteins: one is rotation of the whole protein about the normal to the plane of the membrane, and the other is restricted wobbling of the whole or part of the protein molecule. In the former case, r(t) is determined by a rotational diffusion coefficient and an angle between the absorption moment(s) and the normal to the plane of the membrane. Rotation of rigid transmembrane proteins can be described by this treatment. In the latter case, r(t) is characterized by a wobbling diffusion coefficient and the degree of orientational constraint. This treatment may be applicable to independent wobbling of the hydrophilic part of membrane proteins. We further show that, for linear and circularly degenerate chromophores, the effect of the excitation flash intensity on r(t) can be accounted for by a constant scaling factor.

Citing Articles

Fluorescence microscopy imaging of a neurotransmitter receptor and its cell membrane lipid milieu.

Barrantes F Front Mol Biosci. 2022; 9:1014659.

PMID: 36518846 PMC: 9743973. DOI: 10.3389/fmolb.2022.1014659.


Dynamics of an integral membrane peptide: a deuterium NMR relaxation study of gramicidin.

Prosser R, Davis J Biophys J. 1994; 66(5):1429-40.

PMID: 7520294 PMC: 1275863. DOI: 10.1016/S0006-3495(94)80933-6.


Anisotropic rotation of bacteriorhodopsin in lipid membranes. Comparison of theory with experiment.

Cherry R, Godfrey R Biophys J. 1981; 36(1):257-76.

PMID: 7284552 PMC: 1327587. DOI: 10.1016/S0006-3495(81)84727-3.


Photoselection and circular dichroism in the purple membrane.

Godfrey R Biophys J. 1982; 38(1):1-6.

PMID: 7074194 PMC: 1328806. DOI: 10.1016/S0006-3495(82)84523-2.


Light activates rotations of bacteriorhodopsin in the purple membrane.

Ahl P, Cone R Biophys J. 1984; 45(6):1039-49.

PMID: 6743741 PMC: 1434987. DOI: 10.1016/S0006-3495(84)84251-4.


References
1.
Yguerabide J, Epstein H, Stryer L . Segmental flexibility in an antibody molecule. J Mol Biol. 1970; 51(3):573-90. DOI: 10.1016/0022-2836(70)90009-4. View

2.
Wahl P, Kasai M, Changeux P . A study on the motion of proteins in excitable membrane fragments by nanosecond fluorescence polarization spectroscopy. Eur J Biochem. 1971; 18(3):332-41. DOI: 10.1111/j.1432-1033.1971.tb01248.x. View

3.
Cone R . Rotational diffusion of rhodopsin in the visual receptor membrane. Nat New Biol. 1972; 236(63):39-43. DOI: 10.1038/newbio236039a0. View

4.
Belford G, Belford R, Weber G . Dynamics of fluorescence polarization in macromolecules. Proc Natl Acad Sci U S A. 1972; 69(6):1392-3. PMC: 426709. DOI: 10.1073/pnas.69.6.1392. View

5.
Rigler R, Ehrenberg M . Molecular interactions and structure as analysed by fluorescence relaxation spectroscopy. Q Rev Biophys. 1973; 6(2):139-99. DOI: 10.1017/s003358350000113x. View