» Articles » PMID: 7193741

Ion and Sugar Permeabilities of Lecithin Bilayers: Comparison of Curved and Planar Bilayers

Overview
Journal J Membr Biol
Date 1980 Dec 15
PMID 7193741
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Na+ and sugar permeabilities of egg lecithin bilayers were measured using curved bilayers and planar bilayers as represented by single-bilayer vesicles and black lipid films, respectively. The Na+ permeability coefficient measured with single-bilayer vesicles at 25 degrees C is (2.1 +/- 0.6) x 10(-13) cm sec-1. Because of technical difficulties it has been impossible to measure ionic permeabilities of values lower than about 10(-10) cm sec-1 in planar (black) lipid bilayers using tracer methods. The D-glucose and D-fructose permeabilities were measured with both curved and planar bilayers. The permeability coefficients measured with vesicles at 25 degrees C are (0.3 +/- 0.2) x 10(-10) cm sec-1 for glucose and (4 +/- 1) x 10(-10) cm sec-1 for D-fructose; these are in reasonable agreement with the corresponding values obtained for planar (black) lipid bilayers which are (1.1 +/- 0.3) x 10(-10) cm sec-1 for D-fructose, respectively.

Citing Articles

Meta-Analysis of Permeability Literature Data Shows Possibilities and Limitations of Popular Methods.

Storchmannova K, Balouch M, Juracka J, Stepanek F, Berka K Mol Pharm. 2025; 22(3):1293-1304.

PMID: 39977255 PMC: 11881145. DOI: 10.1021/acs.molpharmaceut.4c00975.


Investigating drug-liposome interactions using liposomal electrokinetic chromatography.

Simonova A, Balouch M, Stepanek F, Krizek T Anal Bioanal Chem. 2025; .

PMID: 39939418 DOI: 10.1007/s00216-025-05783-6.


What Is life? Rethinking Biology in Light of Fundamental Parameters.

Fantini J, Matveeva M, Lefebvre M, Chahinian H Life (Basel). 2024; 14(3).

PMID: 38541606 PMC: 10971028. DOI: 10.3390/life14030280.


Modeling of SGLT1 in Reconstituted Systems Reveals Apparent Ion-Dependencies of Glucose Uptake and Strengthens the Notion of Water-Permeable Apo States.

Barta T, Sandtner W, Wachlmayr J, Hannesschlaeger C, Ebert A, Speletz A Front Physiol. 2022; 13:874472.

PMID: 35784872 PMC: 9242095. DOI: 10.3389/fphys.2022.874472.


Propidium uptake and ATP release in A549 cells share similar transport mechanisms.

Boudreault F, Tan J, Grygorczyk R Biophys J. 2022; 121(9):1593-1609.

PMID: 35398020 PMC: 9117937. DOI: 10.1016/j.bpj.2022.04.007.


References
1.
Wood R, Wirth Jr F, Morgan H . Glucose permeability of lipid bilayer membranes. Biochim Biophys Acta. 1968; 163(2):171-8. DOI: 10.1016/0005-2736(68)90095-3. View

2.
Brunner J, Skrabal P, Hauser H . Single bilayer vesicles prepared without sonication. Physico-chemical properties. Biochim Biophys Acta. 1976; 455(2):322-31. DOI: 10.1016/0005-2736(76)90308-4. View

3.
de Gier J, Mandersloot J, Van Deenen L . Lipid composition and permeability of liposomes. Biochim Biophys Acta. 1968; 150(4):666-75. DOI: 10.1016/0005-2736(68)90056-4. View

4.
Stockton G, Polnaszek C, Tulloch A, Hasan F, Smith I . Molecular motion and order in single-bilayer vesicles and multilamellar dispersions of egg lecithin and lecithin-cholesterol mixtures. A deuterium nuclear magnetic resonance study of specifically labeled lipids. Biochemistry. 1976; 15(5):954-66. DOI: 10.1021/bi00650a003. View

5.
Vanderkooi J, Martonosi A . Sarcoplasmic reticulum. XVI. The permeability of phosphatidyl choline vesicles for calcium. Arch Biochem Biophys. 1971; 147(2):632-46. DOI: 10.1016/0003-9861(71)90422-x. View