» Articles » PMID: 7059650

On the Wobbling-in-cone Analysis of Fluorescence Anisotropy Decay

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1982 Feb 1
PMID 7059650
Citations 41
Authors
Affiliations
Soon will be listed here.
Abstract

Interpretation of fluorescence anisotropy decay for the case of restricted rotational diffusion often requires a model. To investigate the extent of model dependence, two models are compared: a strict cone model, in which a fluorescent probe wobbles uniformly within a cone, and a Gaussian model, where the stationary distribution of the probe orientation is of a Gaussian type. For the same experimental anisotropy decay, analysis by the Gaussian model predicts a smaller value for the rate of wobbling motion than the strict cone analysis, but the difference is 35% at most; the cone angle obtained by the strict cone analysis agrees closely with the effective width of the Gaussian distribution. The results suggest that, when only two parameters (the rate and the angular range) are extracted from an experiment, the choice of a model is not crucial as long as the model contains the essential feature, e.g., the more-or-less conical restriction, of the motion under study. Model-independent analyses are also discussed.

Citing Articles

Imipramine Treatment Alters Sphingomyelin, Cholesterol, and Glycerophospholipid Metabolism in Isolated Macrophage Lysosomes.

Albright J, Sydor M, Shannahan J, Ferreira C, Holian A Biomolecules. 2023; 13(12).

PMID: 38136603 PMC: 10742328. DOI: 10.3390/biom13121732.


Sub-millisecond conformational dynamics of the A adenosine receptor revealed by single-molecule FRET.

Maslov I, Volkov O, Khorn P, Orekhov P, Gusach A, Kuzmichev P Commun Biol. 2023; 6(1):362.

PMID: 37012383 PMC: 10070357. DOI: 10.1038/s42003-023-04727-z.


Cholesterol content regulates silica-induced lysosomal membrane permeability.

Sydor M, Kendall R, Holian A Front Toxicol. 2023; 5:1112822.

PMID: 36860548 PMC: 9969097. DOI: 10.3389/ftox.2023.1112822.


NAD(P)H binding configurations revealed by time-resolved fluorescence and two-photon absorption.

Blacker T, Duchen M, Bain A Biophys J. 2023; 122(7):1240-1253.

PMID: 36793214 PMC: 10111271. DOI: 10.1016/j.bpj.2023.02.014.


Molecular recognition between membrane epitopes and nearly free surface silanols explains silica membranolytic activity.

Pavan C, Sydor M, Bellomo C, Leinardi R, Canana S, Kendall R Colloids Surf B Biointerfaces. 2022; 217:112625.

PMID: 35738078 PMC: 10796170. DOI: 10.1016/j.colsurfb.2022.112625.


References
1.
Kawato S, Kinosita Jr K, Ikegami A . Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques. Biochemistry. 1977; 16(11):2319-24. DOI: 10.1021/bi00630a002. View

2.
Kinosita Jr K, Kawato S, Ikegami A . A theory of fluorescence polarization decay in membranes. Biophys J. 1977; 20(3):289-305. PMC: 1473359. DOI: 10.1016/S0006-3495(77)85550-1. View

3.
Heyn M . Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments. FEBS Lett. 1979; 108(2):359-64. DOI: 10.1016/0014-5793(79)80564-5. View

4.
Jahnig F . Structural order of lipids and proteins in membranes: evaluation of fluorescence anisotropy data. Proc Natl Acad Sci U S A. 1979; 76(12):6361-5. PMC: 411864. DOI: 10.1073/pnas.76.12.6361. View

5.
Uchida T, Nagai Y, Kawasaki Y, Wakayama N . Fluorospectroscopic studies of various ganglioside and ganglioside--lecithin dispersions. Steady-state and time-resolved fluorescence measurements with 1,6-diphenyl-1,3,5-hexatriene. Biochemistry. 1981; 20(1):162-9. DOI: 10.1021/bi00504a027. View