Kelly S, Eccardt A, Fisher J
J Vis Exp. 2018; (135).
PMID: 29782017
PMC: 6101112.
DOI: 10.3791/57565.
Yamashoji S
Biochem Biophys Rep. 2017; 6:88-93.
PMID: 28955867
PMC: 5598221.
DOI: 10.1016/j.bbrep.2016.03.007.
Qiu Z, Rubinstein B, Stern A
Planta. 2013; 165(3):383-91.
PMID: 24241144
DOI: 10.1007/BF00392236.
Komor E, Thom M, Maretzki A
Planta. 2013; 170(1):34-43.
PMID: 24232839
DOI: 10.1007/BF00392378.
Kochian L, Lucas W
Plant Physiol. 1985; 77(2):429-36.
PMID: 16664070
PMC: 1064531.
DOI: 10.1104/pp.77.2.429.
Depolarization of Cell Membrane Potential during Trans-Plasma Membrane Electron Transfer to Extracellular Electron Acceptors in Iron-Deficient Roots of Phaseolus vulgaris L.
Sijmons P, Lanfermeijer F, de Boer A, Prins H, Bienfait H
Plant Physiol. 1984; 76(4):943-6.
PMID: 16663976
PMC: 1064411.
DOI: 10.1104/pp.76.4.943.
Redox activity at the surface of oat root cells.
Rubinstein B, Stern A, Stout R
Plant Physiol. 1984; 76(2):386-91.
PMID: 16663850
PMC: 1064296.
DOI: 10.1104/pp.76.2.386.
A transplasmamembrane electron transport system in maize roots.
Federico R, Giartosio C
Plant Physiol. 1983; 73(1):182-4.
PMID: 16663172
PMC: 1066431.
DOI: 10.1104/pp.73.1.182.
Iron Reduction and Trans Plasma Membrane Electron Transfer in the Yeast Saccharomyces cerevisiae.
Lesuisse E, Labbe P
Plant Physiol. 1992; 100(2):769-77.
PMID: 16653057
PMC: 1075625.
DOI: 10.1104/pp.100.2.769.
A transplasma membrane redox system in Phycomyces blakesleeanus: properties of a ferricyanide reductase activity regulated by iron level and vitamin K3.
Baroja-Mazo A, Del Valle P, Rua J, Busto F, de Cima S, de Arriaga D
J Bioenerg Biomembr. 2004; 36(5):481-92.
PMID: 15534395
DOI: 10.1023/B:JOBB.0000047330.65632.5d.
Effectors of the mammalian plasma membrane NADH-oxidoreductase system. Short-chain ubiquinone analogues as potent stimulators.
Vaillant F, Larm J, McMullen G, Wolvetang E, Lawen A
J Bioenerg Biomembr. 1996; 28(6):531-40.
PMID: 8953385
DOI: 10.1007/BF02110443.
Extracellular ascorbate stabilization as a result of transplasma electron transfer in Saccharomyces cerevisiae.
Santos-Ocana C, Navas P, Crane F, Cordoba F
J Bioenerg Biomembr. 1995; 27(6):597-603.
PMID: 8746846
DOI: 10.1007/BF02111657.
Mucosal surface ferricyanide reductase activity in mouse duodenum.
Pountney D, Raja K, Bottwood M, Wrigglesworth J, Simpson R
Biometals. 1996; 9(1):15-20.
PMID: 8574090
DOI: 10.1007/BF00188085.
The fission yeast ferric reductase gene frp1+ is required for ferric iron uptake and encodes a protein that is homologous to the gp91-phox subunit of the human NADPH phagocyte oxidoreductase.
Roman D, Dancis A, Anderson G, Klausner R
Mol Cell Biol. 1993; 13(7):4342-50.
PMID: 8321236
PMC: 359993.
DOI: 10.1128/mcb.13.7.4342-4350.1993.
Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae.
Georgatsou E, Alexandraki D
Mol Cell Biol. 1994; 14(5):3065-73.
PMID: 8164662
PMC: 358674.
DOI: 10.1128/mcb.14.5.3065-3073.1994.
Potentiation of bleomycin cytotoxicity in Saccharomyces cerevisiae.
Moore C
Antimicrob Agents Chemother. 1994; 38(7):1615-9.
PMID: 7526783
PMC: 284601.
DOI: 10.1128/AAC.38.7.1615.
Properties of a transplasma membrane electron transport system in HeLa cells.
Sun I, Crane F, Grebing C, Low H
J Bioenerg Biomembr. 1984; 16(5-6):583-95.
PMID: 6537437
DOI: 10.1007/BF00743247.
A link between transport and plasma membrane redox system(s) in carrot cells.
Misra P, Craig T, Crane F
J Bioenerg Biomembr. 1984; 16(2):143-52.
PMID: 6242153
DOI: 10.1007/BF00743045.
Regulated redox processes at the plasmalemma of plant root cells and their function in iron uptake.
Bienfait H
J Bioenerg Biomembr. 1985; 17(2):73-83.
PMID: 3158648
DOI: 10.1007/BF00744199.
Transplasmalemma electron transport is changed in simian virus 40 transformed liver cells.
Sun I, Navas P, Crane F, Chou J, Low H
J Bioenerg Biomembr. 1986; 18(6):471-85.
PMID: 3025192
DOI: 10.1007/BF00743145.