» Articles » PMID: 7014553

New Concepts on the Role of Ubiquinone in the Mitochondrial Respiratory Chain

Overview
Publisher Springer
Date 1981 Apr 1
PMID 7014553
Citations 31
Authors
Affiliations
Soon will be listed here.
Abstract

Ubiquinone participates in the oxidation-reduction reactions of the mitochondrial respiratory chain. In addition, this molecule possesses the necessary properties to function as a hydrogen carrier, thereby stoichiometrically coupling proton translocation to respiration by a direct chemiosmotic mechanism. This review discusses recent experimental evidence and new concepts relating to ubiquinone function in the mitochondrial respiratory chain. Emphasis is placed on possible protonmotive mechanisms of ubiquinone function, recent evidence implicating stable forms of ubisemiquinone in the respiratory chain, and properties of the ubiquinone molecule which may relate to its biological function.

Citing Articles

Optic Nerve Neuroprotection in Glaucoma: A Narrative Review.

DAngelo A, Vitiello L, Lixi F, Abbinante G, Coppola A, Gagliardi V J Clin Med. 2024; 13(8).

PMID: 38673487 PMC: 11050811. DOI: 10.3390/jcm13082214.


Residual Complex I activity and amphidirectional Complex II operation support glutamate catabolism through mtSLP in anoxia.

Ravasz D, Bui D, Nazarian S, Pallag G, Karnok N, Roberts J Sci Rep. 2024; 14(1):1729.

PMID: 38242919 PMC: 10798963. DOI: 10.1038/s41598-024-51365-4.


The target site of the novel fungicide quinofumelin, class II dihydroorotate dehydrogenase.

Higashimura N, Hamada A, Ohara T, Sakurai S, Ito H, Banba S J Pestic Sci. 2022; 47(4):190-196.

PMID: 36514691 PMC: 9716045. DOI: 10.1584/jpestics.D22-027.


Chemistry of Lipoquinones: Properties, Synthesis, and Membrane Location of Ubiquinones, Plastoquinones, and Menaquinones.

Braasch-Turi M, Koehn J, Crans D Int J Mol Sci. 2022; 23(21).

PMID: 36361645 PMC: 9656164. DOI: 10.3390/ijms232112856.


Electron Transport Lipids Fold Within Membrane-Like Interfaces.

Braasch-Turi M, Koehn J, Kostenkova K, Van Cleave C, Ives J, Murakami H Front Chem. 2022; 10:827530.

PMID: 35350775 PMC: 8957872. DOI: 10.3389/fchem.2022.827530.


References
1.
Wilson D, Erecinska M, Leigh Jr J, Koppelman M . The properties of the mitochondrial succinate-cytochrome c reductase. Arch Biochem Biophys. 1972; 151(1):112-21. DOI: 10.1016/0003-9861(72)90479-1. View

2.
Depierre J, Ernster L . Enzyme topology of intracellular membranes. Annu Rev Biochem. 1977; 46:201-62. DOI: 10.1146/annurev.bi.46.070177.001221. View

3.
Mitchell P . Protonmotive redox mechanism of the cytochrome b-c1 complex in the respiratory chain: protonmotive ubiquinone cycle. FEBS Lett. 1975; 56(1):1-6. DOI: 10.1016/0014-5793(75)80098-6. View

4.
von Jagow G, Bohrer C . Inhibition of electron transfer from ferrocytochrome b to ubiquinone, cytochrome c1 and duroquinone by antimycin. Biochim Biophys Acta. 1975; 387(3):409-24. DOI: 10.1016/0005-2728(75)90082-1. View

5.
van Ark G, Berden J . Binding of HQNO to beef-heart sub-mitochondrial particles. Biochim Biophys Acta. 1977; 459(1):119-27. DOI: 10.1016/0005-2728(77)90014-7. View