» Articles » PMID: 698343

Picosecond and Steady State, Variable Intensity and Variable Temperature Emission Spectroscopy of Bacteriorhodopsin

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1978 Sep 1
PMID 698343
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

The bacteriorhodopsin emission lifetime at 77 degrees K has been obtained for different regions of the emission spectrum with single-pulse excitation. The data under all conditions yield a lifetime of 60 +/- 15 ps. Intensity effects on this lifetime have been ruled out by studying the relative emission amplitude as a function of the excitation pulse energy. We relate our lifetime to previously reported values at other temperatures by studying the relative emission quantum efficiency as a function of temperature. These variable temperature studies have indicated that an excited state with an emission maximum at 670 nm begins to contribute to the spectrum as the temperature is lowered. Within our experimental error the picosecond data seem to suggest that this new emission may arise from a minimum of the same electronic state responsible for the 77 degrees K emission at 720 nm. A correlation is noted between a 1.0-ps formation time observed in absorption by Ippen et al. (Ippen, E.P., C.V. Shank, A. Lewis, and M.A. Marcus. 1978. Subpicosecond spectroscopy of bacteriorhodopsin. Science [wash. D.C.]. 200:1279-1281 and a time extrapolated from relative quantum efficiency measurements and the 77 degrees K fluorescence lifetime that we report.

Citing Articles

Fluorescence of the Retinal Chromophore in Microbial and Animal Rhodopsins.

Nikolaev D, Shtyrov A, Vyazmin S, Vasin A, Panov M, Ryazantsev M Int J Mol Sci. 2023; 24(24).

PMID: 38139098 PMC: 10743670. DOI: 10.3390/ijms242417269.


Aborted double bicycle-pedal isomerization with hydrogen bond breaking is the primary event of bacteriorhodopsin proton pumping.

Altoe P, Cembran A, Olivucci M, Garavelli M Proc Natl Acad Sci U S A. 2010; 107(47):20172-7.

PMID: 21048087 PMC: 2996645. DOI: 10.1073/pnas.1007000107.


Early picosecond events in the photocycle of bacteriorhodopsin.

Polland H, Franz M, Zinth W, kaiser W, Kolling E, Oesterhelt D Biophys J. 2009; 49(3):651-62.

PMID: 19431670 PMC: 1329512. DOI: 10.1016/S0006-3495(86)83692-X.


Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin.

McCamant D, Kukura P, Mathies R J Phys Chem B. 2006; 109(20):10449-57.

PMID: 16852266 PMC: 1544036. DOI: 10.1021/jp050095x.


Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization.

Garavelli M, Bernardi F, Merchan M, Robb M, Olivucci M Proc Natl Acad Sci U S A. 2000; 97(17):9379-84.

PMID: 10944211 PMC: 16872. DOI: 10.1073/pnas.97.17.9379.


References
1.
Ippen E, Shank C, Lewis A, Marcus M . Subpicosecond spectroscopy of bacteriorhodopsin. Science. 1978; 200(4347):1279-81. DOI: 10.1126/science.663607. View

2.
Marcus M, Lewis A . Kinetic resonance Raman spectroscopy: dynamics of deprotonation of the Schiff base of bacteriorhodopsin. Science. 1977; 195(4284):1328-30. DOI: 10.1126/science.841330. View

3.
Porter G, Synowiec J, Tredwell C . Intensity effects on the fluorescence of in vivo chlorophyll. Biochim Biophys Acta. 1977; 459(3):329-36. DOI: 10.1016/0005-2728(77)90034-2. View

4.
Gillbro T, Kriebel A, Wild U . On the origin of the red emission of light adapted purple membrane of Halobacterium halobium. FEBS Lett. 1977; 78(1):57-60. DOI: 10.1016/0014-5793(77)80272-x. View

5.
Geacintov N, Breton J, Swenberg C, Campillo A, Hyer R, SHAPIRO S . Picosecond and microsecond pulse laser studies of exciton quenching and exciton distribution in spinach chloroplasts at low temperatures. Biochim Biophys Acta. 1977; 461(2):306-12. DOI: 10.1016/0005-2728(77)90180-3. View