» Articles » PMID: 698340

Formation of "solvent-free" Black Lipid Bilayer Membranes from Glyceryl Monooleate Dispersed in Squalene

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 1978 Sep 1
PMID 698340
Citations 64
Authors
Affiliations
Soon will be listed here.
Abstract

A simple technique for forming "black" lipid bilayer membranes containing negligible amounts of alkyl solvent is described. The membranes are formed by the method of Mueller et al (Circulation. 1962. 26:1167.) from glyceryl monooleate (GMO) dispersed in squalene. The squalene forms an annulus to satisfy the boundary conditions of the planar bilayer but does not appear to dissolve noticeably in the bilayer itself. The specific geometric capacitance (Cg) of the membranes at 20 degrees C formed by this technique is 0.7771 +/- 0.0048 muF/cm2. Theoretical estimates of Cg for solvent-free bilayers range from 0.75 to 0.81 muF/cm2. Alkane-free GMO bilayers formed from n-octadecane by the solvent freeze-out method of White (Biochim. Biophys. Acta. 1974. 356:8) have values of Cg = 0.7903 +/- 0.0013 muF/cm2 at 20.5 degrees C. The agreement between the various values of Cg strongly suggests that the bilayers are free of squalene. DC potentials applied to the bilayers have no detectable effect on the value of Cg, as expected for solvent-free films. The ability to form bilayers essentially free of the solvent used in the forming solution makes it possible to determine the area per molecule of the surface active lipid in the bilayer. The area per molecule of GMO at 20 degrees C is estimated to be 37.9 +/- 0.2 A2.

Citing Articles

The Role of Lipid Intrinsic Curvature in the Droplet Interface Bilayer.

Gudyka J, Ceja-Vega J, Krmic M, Porteus R, Lee S Langmuir. 2024; 40(22):11428-11435.

PMID: 38764431 PMC: 11155247. DOI: 10.1021/acs.langmuir.4c00270.


Concentration-Dependent Effects of Curcumin on Membrane Permeability and Structure.

Gudyka J, Ceja-Vega J, Ivanchenko K, Morocho Z, Panella M, Gamez Hernandez A ACS Pharmacol Transl Sci. 2024; 7(5):1546-1556.

PMID: 38751632 PMC: 11091966. DOI: 10.1021/acsptsci.4c00093.


Domain Size Regulation in Phospholipid Model Membranes Using Oil Molecules and Hybrid Lipids.

Scheidegger L, Stricker L, Beltramo P, Vermant J J Phys Chem B. 2022; 126(31):5842-5854.

PMID: 35895895 PMC: 9377339. DOI: 10.1021/acs.jpcb.2c02862.


Trans-Resveratrol Decreases Membrane Water Permeability: A Study of Cholesterol-Dependent Interactions.

Ceja-Vega J, Perez E, Scollan P, Rosario J, Gamez Hernandez A, Ivanchenko K J Membr Biol. 2022; 255(4-5):575-590.

PMID: 35748919 DOI: 10.1007/s00232-022-00250-0.


Characterizing the Structure and Interactions of Model Lipid Membranes Using Electrophysiology.

El-Beyrouthy J, Freeman E Membranes (Basel). 2021; 11(5).

PMID: 33925756 PMC: 8145864. DOI: 10.3390/membranes11050319.


References
1.
Alvarez O, Latorre R . Voltage-dependent capacitance in lipid bilayers made from monolayers. Biophys J. 1978; 21(1):1-17. PMC: 1473368. DOI: 10.1016/S0006-3495(78)85505-2. View

2.
White S . Studies of the physical chemistry of planar bilayer membranes using high-precision measurements of specific capacitance. Ann N Y Acad Sci. 1977; 303:243-65. View

3.
White S, Thompson T . Capacitance, area, and thickness variations in thin lipid films. Biochim Biophys Acta. 1973; 323(1):7-22. DOI: 10.1016/0005-2736(73)90428-8. View

4.
Montal M, Mueller P . Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc Natl Acad Sci U S A. 1972; 69(12):3561-6. PMC: 389821. DOI: 10.1073/pnas.69.12.3561. View

5.
White S . Temperature-dependent structural changes in planar bilayer membranes: solvent "freeze-out". Biochim Biophys Acta. 1974; 356(1):8-16. DOI: 10.1016/0005-2736(74)90289-2. View