» Articles » PMID: 6943556

Electron Microscopy Shows Periodic Structure in Collagen Fibril Cross Sections

Overview
Specialty Science
Date 1981 Jun 1
PMID 6943556
Citations 31
Authors
Affiliations
Soon will be listed here.
Abstract

X-ray diffraction was used to monitor the effects of electron microscope fixation, staining, and embedding procedures on the preservation of the three-dimensional crystalline order in collagen fibrils of rat tail tendon. A procedure is described in which the characteristic 3.8-nm lateral spacing is preserved, with increased contrast, in the diffraction pattern of the embedded fiber. This spacing is correlated with the separation between the tangentially oriented equally spaced lines of density observed in electron microscope ultrathin fibril cross sections of the same material. Optical diffraction of electron micrographs gives an objective measure of the periodicity and suggests that the fibril is composed of concentrically oriented crystalline domains. These observations, when combined with a recent interpretation of the native x-ray diffraction data [Hulmes, D. J. S. & Miller, A. (1979) Nature (London) 282, 878-880] suggest a tentative model for the three-dimensional structure of collagen fibrils.

Citing Articles

Peptidic "Molecular Beacon" for Collagen.

Yang J, Quan Y, Ouyang Y, Tan K, Weber R, Griffin R Biomacromolecules. 2024; 25(10):6773-6779.

PMID: 39225003 PMC: 11563731. DOI: 10.1021/acs.biomac.4c01000.


Extracellular matrix-derived materials for tissue engineering and regenerative medicine: A journey from isolation to characterization and application.

Noro J, Vilaca-Faria H, Reis R, Pirraco R Bioact Mater. 2024; 34:494-519.

PMID: 38298755 PMC: 10827697. DOI: 10.1016/j.bioactmat.2024.01.004.


Using sequence data to predict the self-assembly of supramolecular collagen structures.

Puszkarska A, Frenkel D, Colwell L, Duer M Biophys J. 2022; 121(16):3023-3033.

PMID: 35859421 PMC: 9463645. DOI: 10.1016/j.bpj.2022.07.019.


Glycation changes molecular organization and charge distribution in type I collagen fibrils.

Bansode S, Bashtanova U, Li R, Clark J, Muller K, Puszkarska A Sci Rep. 2020; 10(1):3397.

PMID: 32099005 PMC: 7042214. DOI: 10.1038/s41598-020-60250-9.


3D mapping of native extracellular matrix reveals cellular responses to the microenvironment.

Lansky Z, Mutsafi Y, Houben L, Ilani T, Armony G, Wolf S J Struct Biol X. 2020; 1:100002.

PMID: 32055794 PMC: 7001979. DOI: 10.1016/j.yjsbx.2018.100002.


References
1.
Smith J, Frame J . Observations on the collagen and proteinpolysaccharide complex of rabbit cornea stroma. J Cell Sci. 1969; 4(2):421-36. DOI: 10.1242/jcs.4.2.421. View

2.
TROMANS W, HORNE R, GRESHAM G, Bailey A . Electron microscope studies on the structure of collagen fibrils by negative staining. Z Zellforsch Mikrosk Anat. 1963; 58:798-802. DOI: 10.1007/BF00410661. View

3.
BOUTEILLE M, PEASE D . The tridimensional structure of native collagenous fibrils, their proteinaceous filaments. J Ultrastruct Res. 1971; 35(3):314-38. DOI: 10.1016/s0022-5320(71)80161-2. View

4.
REED R . Freeze-etched connective tissue. Int Rev Connect Tissue Res. 1973; 6:257-305. DOI: 10.1016/b978-0-12-363706-2.50012-x. View

5.
Miller A, Parry D . Structure and packing of microfibrils in collagen. J Mol Biol. 1973; 75(2):441-7. DOI: 10.1016/0022-2836(73)90035-1. View