» Articles » PMID: 6941246

Time-resolved Protein Fluorescence Studies of Intermediates in the Photochemical Cycle of Bacteriorhodopsin

Overview
Specialty Science
Date 1981 Jan 1
PMID 6941246
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

The photolysis-induced changes in the protein fluorescence intensity (at 320 nm) during the proton-pumping cycle of bacteriorhodopsin were examined by a delayed two-pulse technique in the time range 1 microsecond-20 msec at room temperature. No detectable change in the protein fluorescence intensity was observed on the earliest time scale within the lifetime of the intermediate K590, when retinal apparently undergoes the largest structural changes. The time dependence of the relative changes in fluorescence intensity did, however, display a close correlation with the population of the L550 and M412 intermediates. From a computer numerical fit of the data, with available published kinetic parameters, the protein fluorescence quantum yields of the K590, L550, and M412 intermediates are found to be 1.0, 0.92, and 0.80 of that for native bR570, respectively. The probable mechanisms of the observed fluorescence quenching during the photochemical cycle are qualitatively discussed.

Citing Articles

Deprotonation of lipid-depleted bacteriorhodopsin.

Jang D, El-Sayed M Proc Natl Acad Sci U S A. 1988; 85(16):5918-22.

PMID: 2842755 PMC: 281876. DOI: 10.1073/pnas.85.16.5918.


Tryptophan fluorescence quenching as a monitor for the protein conformation changes occurring during the photocycle of bacteriorhodopsin under different perturbations.

Jang D, El-Sayed M Proc Natl Acad Sci U S A. 1989; 86(15):5815-9.

PMID: 2762298 PMC: 297721. DOI: 10.1073/pnas.86.15.5815.


Effect of genetic modification of tyrosine-185 on the proton pump and the blue-to-purple transition in bacteriorhodopsin.

Jang D, El-Sayed M, Stern L, Mogi T, Khorana H Proc Natl Acad Sci U S A. 1990; 87(11):4103-7.

PMID: 2349220 PMC: 54055. DOI: 10.1073/pnas.87.11.4103.


Decay of the tryptophan fluorescence anisotropy in bacteriorhodopsin and its modified forms.

van den Berg R, Jang D, El-Sayed M Biophys J. 1990; 57(4):759-64.

PMID: 2344462 PMC: 1280777. DOI: 10.1016/S0006-3495(90)82596-0.


Effects of tryptophan mutation on the deprotonation and reprotonation kinetics of the Schiff base during the photocycle of bacteriorhodopsin.

Wu S, Chang Y, El-Sayed M, Marti T, Mogi T, Khorana H Biophys J. 1992; 61(5):1281-8.

PMID: 1318094 PMC: 1260391. DOI: 10.1016/S0006-3495(92)81936-7.

References
1.
Stoeckenius W, Lozier R, Bogomolni R . Bacteriorhodopsin and the purple membrane of halobacteria. Biochim Biophys Acta. 1978; 505(3-4):215-78. DOI: 10.1016/0304-4173(79)90006-5. View

2.
Konishi T, Packer L . Light-dark conformational states in bacteriorhodopsin. Biochem Biophys Res Commun. 1976; 72(4):1437-42. DOI: 10.1016/s0006-291x(76)80174-x. View

3.
Oesterhelt D, Schuhmann L, Gruber H . Light-dependent reaction of bacteriorhodopsin with hydroxylamine in cell suspensions of Halobacterium halobium: demonstration of an apo-membrane. FEBS Lett. 1974; 44(3):257-61. DOI: 10.1016/0014-5793(74)81152-x. View

4.
Applebury M, Peters K, Rentzepis P . Primary intermediates in the photochemical cycle of bacteriorhodopsin. Biophys J. 1978; 23(3):375-82. PMC: 1473525. DOI: 10.1016/S0006-3495(78)85456-3. View

5.
Becher B, Cassim J . Improved isolation procedures for the purple membrane of Halobacterium halobium. Prep Biochem. 1975; 5(2):161-78. DOI: 10.1080/00327487508061568. View