» Articles » PMID: 6933455

Compositional Domain Structure in Phosphatidylcholine--cholesterol and Sphingomyelin--cholesterol Bilayers

Overview
Specialty Science
Date 1980 Jul 1
PMID 6933455
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

the lateral distribution of cholesterol in phospholipid bilayers has been investigated through a method of Monte Carlo calculations, using interaction energies deduced from calorimetric results for cholesterol-phospholipid mixtures. Analysis of computer-generated bilayer configurations allows calculation of the spatial localization and relative abundance of distinct regions of varying cholesterol content along the plane of the bilayer. An interfacial phospholipid region between cholesterol-bound and cholesterol-free domains is found to extend one lipid beyond the cholesterol-bound domain for mixtures of cholesterol with palmitoyl sphingomyelin, lignoceroyl sphingomyelin, and dipalmitoyl phosphatidylcholine. The results indicate that the degree of nonideality in the mixing of cholesterol is dependent on fatty acid chain length and that cholesterol mixes more ideally in sphingomyelins than in phosphatidylcholines of equal chain length. It is found that at approximately 20 mol % cholesterol the cholesterol-rich areas suddenly become connected, forming a network that extends over the entire bilayer. This change in the lateral connectivity of the cholesterol-rich domains occurs over a narrow concentration interval and is presumably responsible for the abrupt change in the lateral diffusion coefficient observed at this concentration.

Citing Articles

Lipid composition modulates ATP hydrolysis and calcium phosphate mineral propagation by TNAP-harboring proteoliposomes.

Favarin B, Bolean M, Ramos A, Magrini A, Rosato N, Millan J Arch Biochem Biophys. 2020; 691:108482.

PMID: 32710882 PMC: 8390000. DOI: 10.1016/j.abb.2020.108482.


Detection of misfolded protein aggregates from a clinical perspective.

Stromland O, Jakubec M, Furse S, Halskau O J Clin Transl Res. 2019; 2(1):11-26.

PMID: 30873457 PMC: 6410640.


Lipid microenvironment affects the ability of proteoliposomes harboring TNAP to induce mineralization without nucleators.

Simao A, Bolean M, Favarin B, Amabile Veschi E, Bussola Tovani C, Ramos A J Bone Miner Metab. 2018; 37(4):607-613.

PMID: 30324534 PMC: 6465158. DOI: 10.1007/s00774-018-0962-8.


The many faces (and phases) of ceramide and sphingomyelin I - single lipids.

Fanani M, Maggio B Biophys Rev. 2017; 9(5):589-600.

PMID: 28815463 PMC: 5662039. DOI: 10.1007/s12551-017-0297-z.


Detection of Sphingomyelin Clusters by Raman Spectroscopy.

Shirota K, Yagi K, Inaba T, Li P, Murata M, Sugita Y Biophys J. 2016; 111(5):999-1007.

PMID: 27602727 PMC: 5018142. DOI: 10.1016/j.bpj.2016.07.035.


References
1.
Engelman D, Rothman J . The planar organization of lecithin-cholesterol bilayers. J Biol Chem. 1972; 247(11):3694-7. View

2.
Shimshick E, McConnell H . Lateral phase separations in binary mixtures of cholesterol and phospholipids. Biochem Biophys Res Commun. 1973; 53(2):446-51. DOI: 10.1016/0006-291x(73)90682-7. View

3.
Phillips M, Finer E . The stoichiometry and dynamics of lecithin-cholesterol clusters in bilayer membranes. Biochim Biophys Acta. 1974; 356(2):199-206. DOI: 10.1016/0005-2736(74)90283-1. View

4.
Demel R, de Kruyff B . The function of sterols in membranes. Biochim Biophys Acta. 1976; 457(2):109-32. DOI: 10.1016/0304-4157(76)90008-3. View

5.
Estep T, Mountcastle D, Biltonen R, Thompson T . Studies on the anomalous thermotropic behavior of aqueous dispersions of dipalmitoylphosphatidylcholine-cholesterol mixtures. Biochemistry. 1978; 17(10):1984-9. DOI: 10.1021/bi00603a029. View