» Articles » PMID: 6870820

Synthesis of Hyaluronate in Differentiated Teratocarcinoma Cells. Mechanism of Chain Growth

Overview
Journal Biochem J
Specialty Biochemistry
Date 1983 Apr 1
PMID 6870820
Citations 42
Authors
Affiliations
Soon will be listed here.
Abstract

Hyaluronate could be labelled in vivo with [32P]phosphate. [32P]UDP in an alpha-glycosidic linkage constituted the reducing end of membrane-bound hyaluronate. The UDP is liberated during further chain elongation, indicating that chain growth occurs at the reducing end. [3H]Uridine could be incorporated into hyaluronate during synthesis on the isolated membraneous fraction from [3H]UDP-GlcNAc and [3H]UDP-GlcA, confirming the identification of UDP as a constituent of membrane-bound hyaluronate. These results led to a model of hyaluronate chain elongation at the reducing end by alternate addition of the chains to the substrates. Membrane-bound pyrophosphatases or 5'-nucleotidase are suggested as modulators of hyaluronate synthesis.

Citing Articles

Leishmaniasis and glycosaminoglycans: a future therapeutic strategy?.

Merida-de-Barros D, Chaves S, Belmiro C, Wanderley J Parasit Vectors. 2018; 11(1):536.

PMID: 30285837 PMC: 6171297. DOI: 10.1186/s13071-018-2953-y.


Hyaluronan synthase assembles hyaluronan on a [GlcNAc(β1,4)]n-GlcNAc(α1→)UDP primer and hyaluronan retains this residual chitin oligomer as a cap at the nonreducing end.

Weigel P, Baggenstoss B, Washburn J Glycobiology. 2017; 27(6):536-554.

PMID: 28138013 PMC: 5421502. DOI: 10.1093/glycob/cwx012.


Hyaluronan synthase control of synthesis rate and hyaluronan product size are independent functions differentially affected by mutations in a conserved tandem B-X7-B motif.

Baggenstoss B, Harris E, Washburn J, Medina A, Nguyen L, Weigel P Glycobiology. 2016; 27(2):154-164.

PMID: 27558839 PMC: 5224591. DOI: 10.1093/glycob/cww089.


Hyaluronan Synthase: The Mechanism of Initiation at the Reducing End and a Pendulum Model for Polysaccharide Translocation to the Cell Exterior.

Weigel P Int J Cell Biol. 2015; 2015:367579.

PMID: 26472958 PMC: 4581545. DOI: 10.1155/2015/367579.


Insights into the structure and function of membrane-integrated processive glycosyltransferases.

Bi Y, Hubbard C, Purushotham P, Zimmer J Curr Opin Struct Biol. 2015; 34:78-86.

PMID: 26342143 PMC: 4684724. DOI: 10.1016/j.sbi.2015.07.008.


References
1.
Fransson L, Roden L . Structure of dermatan sulfate. I. Degradation by testicular hyaluronidase. J Biol Chem. 1967; 242(18):4161-9. View

2.
Ishimoto N, Strominger J . Uridine diphosphate as the sole uridine nucleotide product of hyaluronic acid synthetase in group A streptococci. Biochim Biophys Acta. 1967; 148(1):296-7. DOI: 10.1016/0304-4165(67)90305-4. View

3.
Swann D . Studies on hyaluronic acid. II. The protein component(s) of rooster comb hyaluronic acid. Biochim Biophys Acta. 1968; 160(1):96-105. DOI: 10.1016/0005-2795(68)90068-8. View

4.
WARDI A, Allen W, Michos G, Turner D . Isolation of unknown sugar acid from vitreous humor hyaluronic acid. Biochim Biophys Acta. 1969; 184(2):474-6. DOI: 10.1016/0304-4165(69)90055-5. View

5.
Laemmli U . Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227(5259):680-5. DOI: 10.1038/227680a0. View