» Articles » PMID: 6799488

Distinct Galactose Phosphoenolpyruvate-dependent Phosphotransferase System in Streptococcus Lactis

Overview
Journal J Bacteriol
Specialty Microbiology
Date 1982 Feb 1
PMID 6799488
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Lactose-negative (Lac-) mutants were isolated from a variant of Streptococcus lactis C2 in which the lactose plasmid had become integrated into the chromosome. These mutants retained their parental growth characteristics on galactose (Lac- Gal+). This is in contrast to the Lac- variants obtained when the lactose plasmid is lost from S. lactis, which results in a slower growth rate on galactose (Lac- Gal+). The Lac- Gal+ mutants were defective in [14C]thiomethyl-beta-D-galactopyranoside accumulation, suggesting a defect in the lactose phosphoenolpyruvate-dependent phosphotransferase system, but still possessed the ability to form galactose-1-phosphate and galactose-6-phosphate from galactose in a ratio similar to that observed from the parental strain. The Lac- Gald variant formed only galactose-1-phosphate. The results imply that galactose is not translocated via the lactose phosphoenolpyruvate-dependent phosphotransferase system, but rather by a specific galactose phosphoenolpyruvate-dependent phosphotransferase system for which the genetic locus is also found on the lactose plasmid in S. lactis.

Citing Articles

Further Elucidation of Galactose Utilization in MG1363.

Solopova A, Bachmann H, Teusink B, Kok J, Kuipers O Front Microbiol. 2018; 9:1803.

PMID: 30123211 PMC: 6085457. DOI: 10.3389/fmicb.2018.01803.


Towards enhanced galactose utilization by Lactococcus lactis.

Neves A, Pool W, Solopova A, Kok J, Santos H, Kuipers O Appl Environ Microbiol. 2010; 76(21):7048-60.

PMID: 20817811 PMC: 2976262. DOI: 10.1128/AEM.01195-10.


Galactose Expulsion during Lactose Metabolism in Lactococcus lactis subsp. cremoris FD1 Due to Dephosphorylation of Intracellular Galactose 6-Phosphate.

Benthin S, Nielsen J, Villadsen J Appl Environ Microbiol. 1994; 60(4):1254-9.

PMID: 16349233 PMC: 201467. DOI: 10.1128/aem.60.4.1254-1259.1994.


Properties of Lactose Plasmid pLY101 in Lactobacillus casei.

Shimizu-Kadota M Appl Environ Microbiol. 1987; 53(12):2987-91.

PMID: 16347515 PMC: 204236. DOI: 10.1128/aem.53.12.2987-2991.1987.


Characterization, expression, and mutation of the Lactococcus lactis galPMKTE genes, involved in galactose utilization via the Leloir pathway.

Grossiord B, Luesink E, Vaughan E, Arnaud A, de Vos W J Bacteriol. 2003; 185(3):870-8.

PMID: 12533462 PMC: 142802. DOI: 10.1128/JB.185.3.870-878.2003.


References
1.
Langridge J . Mutations conferring quantitative and qualitative increases in beta-galactosidase activity in Escherichia coli. Mol Gen Genet. 1969; 105(1):74-83. DOI: 10.1007/BF00750315. View

2.
McKay L, Baldwin K . Stabilization of Lactose Metabolism in Streptococcus lactis C2. Appl Environ Microbiol. 1978; 36(2):360-7. PMC: 291226. DOI: 10.1128/aem.36.2.360-367.1978. View

3.
Klaenhammer T, McKay L, Baldwin K . Improved lysis of group N streptococci for isolation and rapid characterization of plasmid deoxyribonucleic acid. Appl Environ Microbiol. 1978; 35(3):592-600. PMC: 242884. DOI: 10.1128/aem.35.3.592-600.1978. View

4.
McKay L, Miller 3rd A, Sandine W, Elliker P . Mechanisms of lactose utilization by lactic acid streptococci: enzymatic and genetic analyses. J Bacteriol. 1970; 102(3):804-9. PMC: 247630. DOI: 10.1128/jb.102.3.804-809.1970. View

5.
Thompson J . Galactose transport systems in Streptococcus lactis. J Bacteriol. 1980; 144(2):683-91. PMC: 294718. DOI: 10.1128/jb.144.2.683-691.1980. View