» Articles » PMID: 6787588

Osmotic Control of Kdp Operon Expression in Escherichia Coli

Overview
Specialty Science
Date 1981 Jan 1
PMID 6787588
Citations 109
Authors
Affiliations
Soon will be listed here.
Abstract

Turgor pressure, the difference in osmotic pressure across the inner membrane, has been found to regulate expression of the kdp operon in Escherichia coli. The kdp operon codes for a high-affinity repressible transport system for the uptake of potassium. We have studied the regulation of Kdp expression in a strain in which the gene for beta-galactosidase, lacZ, was placed under control of the kdp promotor. Neither internal nor external K+ concentrations directly controlled Kdp expression. Only when the external K+ concentration was reduced to the point of limiting growth was the kdp operon expressed. An increase in external osmolarity at constant K+ concentration, a procedure that reduces turgor pressure, caused expression of the kdp operon. As the magnitude of the osmotic shift was increased, corresponding to greater decreases in turgor pressure, the amount of Kdp expression also increased. The kdp operon thus appears to be controlled by changes in a physical force, the turgor pressure.

Citing Articles

Interaction of unphosphorylated PtsN with the K/H antiporter YcgO inhibits its activity in Escherichia coli.

Patidar Y, Athreya A, Sharma R, Penmatsa A, Sardesai A J Biol Chem. 2025; 301(2):108153.

PMID: 39742999 PMC: 11808508. DOI: 10.1016/j.jbc.2024.108153.


Regulation of potassium uptake in .

Quintero-Yanes A, Leger L, Collignon M, Mignon J, Mayard A, Michaux C J Bacteriol. 2024; 206(9):e0010724.

PMID: 39133005 PMC: 11411941. DOI: 10.1128/jb.00107-24.


Bacterial cell volume regulation and the importance of cyclic di-AMP.

Foster A, van den Noort M, Poolman B Microbiol Mol Biol Rev. 2024; 88(2):e0018123.

PMID: 38856222 PMC: 11332354. DOI: 10.1128/mmbr.00181-23.


Whole Genome Sequencing and Comparative Genomic Analyses of LZH-9, a Halotolerant Strain with Excellent COD Removal Capability.

Wu X, Zhou H, Li L, Wang E, Zhou X, Gu Y Microorganisms. 2020; 8(5).

PMID: 32408484 PMC: 7284689. DOI: 10.3390/microorganisms8050716.


Chromosomal Organization and Regulation of Genetic Function in Integrates the DNA Analog and Digital Information.

Travers A, Muskhelishvili G EcoSal Plus. 2020; 9(1).

PMID: 32056535 PMC: 11168577. DOI: 10.1128/ecosalplus.ESP-0016-2019.


References
1.
Epstein W . Transposition of the lac region of Escherichia coli. IV. Escape from repression in bacteriophage-carried lac genes. J Mol Biol. 1967; 30(3):529-43. DOI: 10.1016/0022-2836(67)90366-x. View

2.
Epstein W, Davies M . Potassium-dependant mutants of Escherichia coli K-12. J Bacteriol. 1970; 101(3):836-43. PMC: 250399. DOI: 10.1128/jb.101.3.836-843.1970. View

3.
Epstein W, Kim B . Potassium transport loci in Escherichia coli K-12. J Bacteriol. 1971; 108(2):639-44. PMC: 247121. DOI: 10.1128/jb.108.2.639-644.1971. View

4.
Rhoads D, Waters F, Epstein W . Cation transport in Escherichia coli. VIII. Potassium transport mutants. J Gen Physiol. 1976; 67(3):325-41. PMC: 2214971. DOI: 10.1085/jgp.67.3.325. View

5.
Rhoads D, Epstein W . Energy coupling to net K+ transport in Escherichia coli K-12. J Biol Chem. 1977; 252(4):1394-401. View