» Articles » PMID: 6782999

The Distribution of the NADPH Regenerating Mannitol Cycle Among Fungal Species

Overview
Journal Arch Microbiol
Specialty Microbiology
Date 1980 Dec 1
PMID 6782999
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

The mannitol cycle is an important NADPH regenerating system in Alternaria alternata. The cycle is built up to the following enzymes: mannitol 1-phosphate dehydrogenase, mannitol 1-phosphatase, mannitol dehydrogenase and hexokinase. The net reaction of one cycle turn is: NADH + NADP+ + ATP leads to NAD+ + NADPH + ADP + Pi. The enzymes needed for an operating cycle were found in Aspergillus, Botrytis, Penicillium, Pyricularia, Trichothecium, Cladosporium and Thermomyces all genera belonging to Fungi Imperfecti. The only genus of this class lacking the cycle was Candida. No genera from the classes Basidiomycetes and Phycomycetes showed any mannitol 1-phosphate dehydrogenase or mannitol 1-phosphatase activities. The genera investigated, belonging to Ascomycetes, Gibberella, Ceratocystis and Neurospora all lacked mannitol 1-phosphate dehydrogenase. It was concluded that the mannitol cycle is an important and widespread pathway for NADH oxidation and NADP+ reduction in the organisms belonging to the class Fungi Imperfecti.

Citing Articles

Compatible solutes determine the heat resistance of conidia.

Seekles S, van den Brule T, Punt M, Dijksterhuis J, Arentshorst M, Ijadpanahsaravi M Fungal Biol Biotechnol. 2023; 10(1):21.

PMID: 37957766 PMC: 10644514. DOI: 10.1186/s40694-023-00168-9.


Non-canonical D-xylose and L-arabinose metabolism via D-arabitol in the oleaginous yeast Rhodosporidium toruloides.

Adamczyk P, Coradetti S, Gladden J Microb Cell Fact. 2023; 22(1):145.

PMID: 37537595 PMC: 10398940. DOI: 10.1186/s12934-023-02126-x.


Mannitol-1-phosphate dehydrogenase, MpdA, is required for mannitol production in vegetative cells and involved in hyphal branching, heat resistance of conidia and sexual development in Aspergillus nidulans.

Lim J, Jang S, Park H Curr Genet. 2021; 67(4):613-630.

PMID: 33683401 DOI: 10.1007/s00294-021-01163-6.


Biosynthesis of terpene compounds using the non-model yeast Yarrowia lipolytica: grand challenges and a few perspectives.

Worland A, Czajka J, Li Y, Wang Y, Tang Y, Su W Curr Opin Biotechnol. 2020; 64:134-140.

PMID: 32299032 PMC: 7483885. DOI: 10.1016/j.copbio.2020.02.020.


A New Pathway for Mannitol Metabolism in Yeasts Suggests a Link to the Evolution of Alcoholic Fermentation.

Goncalves C, Ferreira C, Goncalves L, Turner D, Leandro M, Salema-Oom M Front Microbiol. 2019; 10:2510.

PMID: 31736930 PMC: 6838020. DOI: 10.3389/fmicb.2019.02510.


References
1.
Leighton T, Stock J, Kelln R . Macroconidial germination in Microsporum gypseum. J Bacteriol. 1970; 103(2):439-46. PMC: 248101. DOI: 10.1128/jb.103.2.439-446.1970. View

2.
Yamada H, Okamoto K, Kodama K, Tanaka S . Mannitol formation by Piricularia oryzae. Biochim Biophys Acta. 1959; 33(1):271-3. DOI: 10.1016/0006-3002(59)90534-7. View

3.
Boonsaeng V, Sullivan P, Shepherd M . Mannitol production in fungi during glucose catabolism. Can J Microbiol. 1976; 22(6):808-16. DOI: 10.1139/m76-117. View

4.
Hult K, Gatenbeck S . Production of NADPH in the mannitol cycle and its relation to polyketide formation in Alternaria alternata. Eur J Biochem. 1978; 88(2):607-12. DOI: 10.1111/j.1432-1033.1978.tb12487.x. View

5.
Lee W . Carbon balance of a mannitol fermentation and the biosynthetic pathway. Appl Microbiol. 1967; 15(5):1206-10. PMC: 547166. DOI: 10.1128/am.15.5.1206-1210.1967. View