Silhavy T, Mitchell A
Protein J. 2019; 38(3):217-228.
PMID: 30684070
PMC: 6589372.
DOI: 10.1007/s10930-019-09813-y.
Blanco M, Learte A, Marchena M, Munoz-Saez E, Cid M, Rodriguez-Martin I
J Vis Exp. 2018; (136).
PMID: 30010638
PMC: 6101999.
DOI: 10.3791/57785.
Latif H, Sahin M, Tarasova J, Tarasova Y, Portnoy V, Nogales J
Appl Environ Microbiol. 2015; 81(16):5477-85.
PMID: 26048924
PMC: 4510162.
DOI: 10.1128/AEM.01365-15.
Silhavy T
J Bacteriol. 2000; 182(21):5935-8.
PMID: 11029410
PMC: 94724.
DOI: 10.1128/JB.182.21.5935-5938.2000.
Boos W, Shuman H
Microbiol Mol Biol Rev. 1998; 62(1):204-29.
PMID: 9529892
PMC: 98911.
DOI: 10.1128/MMBR.62.1.204-229.1998.
Topological analysis of the membrane-bound glucosyltransferase, MdoH, required for osmoregulated periplasmic glucan synthesis in Escherichia coli.
Debarbieux L, Bohin A, Bohin J
J Bacteriol. 1997; 179(21):6692-8.
PMID: 9352918
PMC: 179597.
DOI: 10.1128/jb.179.21.6692-6698.1997.
Subunit interactions in ABC transporters: a conserved sequence in hydrophobic membrane proteins of periplasmic permeases defines an important site of interaction with the ATPase subunits.
Mourez M, Hofnung M, Dassa E
EMBO J. 1997; 16(11):3066-77.
PMID: 9214624
PMC: 1169925.
DOI: 10.1093/emboj/16.11.3066.
Strategies for achieving high-level expression of genes in Escherichia coli.
Makrides S
Microbiol Rev. 1996; 60(3):512-38.
PMID: 8840785
PMC: 239455.
DOI: 10.1128/mr.60.3.512-538.1996.
Requirements for translocation of periplasmic domains in polytopic membrane proteins.
Uhland K, Ehrle R, Zander T, Ehrmann M
J Bacteriol. 1994; 176(15):4565-71.
PMID: 8045887
PMC: 196276.
DOI: 10.1128/jb.176.15.4565-4571.1994.
Tinkering with transporters: periplasmic binding protein-dependent maltose transport in E. coli.
Shuman H, Panagiotidis C
J Bioenerg Biomembr. 1993; 25(6):613-20.
PMID: 7511584
DOI: 10.1007/BF00770248.
Interaction of the maltose-binding protein with membrane vesicles of Escherichia coli.
Richarme G
J Bacteriol. 1982; 149(2):662-7.
PMID: 7035435
PMC: 216556.
DOI: 10.1128/jb.149.2.662-667.1982.
Ultrastructural localization of the maltose-binding protein within the cell envelope of Escherichia coli.
Boos W, Staehelin A
Arch Microbiol. 1981; 129(3):240-6.
PMID: 7020624
DOI: 10.1007/BF00425258.
Formation and excretion of acetylmaltose after accumulation of maltose in Escherichia coli.
Boos W, Ferenci T, Shuman H
J Bacteriol. 1981; 146(2):725-32.
PMID: 7012137
PMC: 217018.
DOI: 10.1128/jb.146.2.725-732.1981.
Methyl-alpha-maltoside and 5-thiomaltose: analogs transported by the Escherichia coli maltose transport system.
Ferenci T
J Bacteriol. 1980; 144(1):7-11.
PMID: 6998971
PMC: 294574.
DOI: 10.1128/jb.144.1.7-11.1980.
Mutants which make more malT product, the activator of the maltose regulon in Escherichia coli.
Debarbouille M, Schwartz M
Mol Gen Genet. 1980; 178(3):589-95.
PMID: 6993855
DOI: 10.1007/BF00337865.
Yeast genes fused to beta-galactosidase in Escherichia coli can be expressed normally in yeast.
Rose M, Casadaban M, Botstein D
Proc Natl Acad Sci U S A. 1981; 78(4):2460-4.
PMID: 6787605
PMC: 319366.
DOI: 10.1073/pnas.78.4.2460.
Molecular components of the signal sequence that function in the initiation of protein export.
Emr S, Silhavy T
J Cell Biol. 1982; 95(3):689-96.
PMID: 6759512
PMC: 2112908.
DOI: 10.1083/jcb.95.3.689.
A mechanism of protein localization: the signal hypothesis and bacteria.
Emr S, Hall M, Silhavy T
J Cell Biol. 1980; 86(3):701-11.
PMID: 6447703
PMC: 2110675.
DOI: 10.1083/jcb.86.3.701.
Study of regulation and transport of hemolysin by using fusion of the beta-galactosidase gene (lacZ) to hemolysin genes.
Juarez A, Hartlein M, Goebel W
J Bacteriol. 1984; 160(1):161-8.
PMID: 6434518
PMC: 214695.
DOI: 10.1128/jb.160.1.161-168.1984.
Mechanisms of protein localization.
Silhavy T, Benson S, Emr S
Microbiol Rev. 1983; 47(3):313-44.
PMID: 6355805
PMC: 281579.
DOI: 10.1128/mr.47.3.313-344.1983.