» Articles » PMID: 6743239

Measurement of the Oxidation-reduction Potentials for One-electron and Two-electron Reduction of Electron-transfer Flavoprotein from Pig Liver

Overview
Journal Biochem J
Specialty Biochemistry
Date 1984 May 1
PMID 6743239
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Potentiometric titrations of pig liver electron-transfer flavoprotein (ETF) were performed at pH 7.5 and 4 degrees C, both in the reductive and oxidative directions. Reduction of ETF to the hydroquinone form required a total of two reducing equivalents/mol of ETF with the formation of sub-stoichiometric amounts of anionic semiquinone as an intermediate. The oxidation-reduction potentials for the two one-electron couples, oxidized ETF/ETF semiquinone and ETF semiquinone/fully reduced ETF, are +4 mV and -50 mV respectively. The overall midpoint potential for the two-electron couple (oxidized ETF/fully reduced ETF) is -23 mV.

Citing Articles

Contrasting roles for two conserved arginines: Stabilizing flavin semiquinone or quaternary structure, in bifurcating electron transfer flavoproteins.

Mohamed-Raseek N, Miller A J Biol Chem. 2022; 298(4):101733.

PMID: 35176283 PMC: 8958531. DOI: 10.1016/j.jbc.2022.101733.


Iron-sulfur flavoenzymes: the added value of making the most ancient redox cofactors and the versatile flavins work together.

Vanoni M Open Biol. 2021; 11(5):210010.

PMID: 33947244 PMC: 8097209. DOI: 10.1098/rsob.210010.


An acyl-CoA dehydrogenase microplate activity assay using recombinant porcine electron transfer flavoprotein.

Zhang Y, Mohsen A, Kochersperger C, Solo K, Schmidt A, Vockley J Anal Biochem. 2019; 581:113332.

PMID: 31194945 PMC: 6661201. DOI: 10.1016/j.ab.2019.06.003.


Closing the gap: yeast electron-transferring flavoprotein links the oxidation of d-lactate and d-α-hydroxyglutarate to energy production via the respiratory chain.

Toplak M, Brunner J, Tabib C, Macheroux P FEBS J. 2019; 286(18):3611-3628.

PMID: 31081204 PMC: 6771786. DOI: 10.1111/febs.14924.


Distinct properties underlie flavin-based electron bifurcation in a novel electron transfer flavoprotein FixAB from .

Duan H, Lubner C, Tokmina-Lukaszewska M, Gauss G, Bothner B, King P J Biol Chem. 2018; 293(13):4688-4701.

PMID: 29462786 PMC: 5880144. DOI: 10.1074/jbc.RA117.000707.


References
1.
Mayhew S, MASSEY V . Purification and characterization of flavodoxin from Peptostreptococcus elsdenii. J Biol Chem. 1969; 244(3):794-802. View

2.
Vetter Jr H, Knappe J . Flavodoxin and ferredoxin of Escherichia coli. Hoppe Seylers Z Physiol Chem. 1971; 352(3):433-46. DOI: 10.1515/bchm2.1971.352.1.433. View

3.
Van Lin B, Bothe H . Flavodoxin from Azotobacter vinelandii. Arch Mikrobiol. 1972; 82(2):155-72. DOI: 10.1007/BF01890407. View

4.
OReilly J . Oxidation-reduction potential of the ferro-ferricyanide system in buffer solutions. Biochim Biophys Acta. 1973; 292(3):509-15. DOI: 10.1016/0005-2728(73)90001-7. View

5.
Hall C, KAMIN H . The purification and some properties of electron transfer flavoprotein and general fatty acyl coenzyme A dehydrogenase from pig liver mitochondria. J Biol Chem. 1975; 250(9):3476-86. View