Waterstraat M, Dehghan A, Gholampour S
Front Bioeng Biotechnol. 2024; 12:1352490.
PMID: 38562668
PMC: 10982383.
DOI: 10.3389/fbioe.2024.1352490.
Cattani A, Schwarzer F, Schwarzer M, Spyrantis A, Marquardt G, Schubert-Bast S
PLoS One. 2023; 18(3):e0282571.
PMID: 36928724
PMC: 10019726.
DOI: 10.1371/journal.pone.0282571.
Panagopoulos D, Strantzalis G, Gavra M, Boviatsis E, Korfias S
Children (Basel). 2022; 9(4).
PMID: 35455537
PMC: 9028279.
DOI: 10.3390/children9040493.
Brunner E, Schaumann A, Pennacchietti V, Schulz M, Thomale U
Childs Nerv Syst. 2022; 38(6):1155-1163.
PMID: 35353205
PMC: 9156487.
DOI: 10.1007/s00381-022-05490-y.
Hall B, Gillespie C, Hennigan D, Bagga V, Mallucci C, Pettorini B
Childs Nerv Syst. 2021; 37(8):2605-2612.
PMID: 34021371
PMC: 8342385.
DOI: 10.1007/s00381-021-05162-3.
Ventriculo-peritoneal shunting devices for hydrocephalus.
Garegnani L, Franco J, Ciapponi A, Garrote V, Vietto V, Medina S
Cochrane Database Syst Rev. 2020; 6:CD012726.
PMID: 32542676
PMC: 7388891.
DOI: 10.1002/14651858.CD012726.pub2.
Valve exchange towards an adjustable differential pressure valve with gravitational unit, clinical outcome of a single-center study.
Alavi S, Schulz M, Schaumann A, Schwarz K, Thomale U
Childs Nerv Syst. 2017; 33(5):759-765.
PMID: 28332153
DOI: 10.1007/s00381-017-3387-0.
Adjustments in gravitational valves for the treatment of childhood hydrocephalus-a retrospective survey.
Gebert A, Schulz M, Haberl H, Thomale U
Childs Nerv Syst. 2013; 29(11):2019-25.
PMID: 23715809
DOI: 10.1007/s00381-013-2160-2.
Shunt survival rates by using the adjustable differential pressure valve combined with a gravitational unit (proGAV) in pediatric neurosurgery.
Thomale U, Gebert A, Haberl H, Schulz M
Childs Nerv Syst. 2012; 29(3):425-31.
PMID: 23135777
DOI: 10.1007/s00381-012-1956-9.
Cognitive changes after cerebrospinal fluid shunting in young adults with spina bifida and assumed arrested hydrocephalus.
Mataro M, Poca M, Sahuquillo J, Cuxart A, Iborra J, de la Calzada M
J Neurol Neurosurg Psychiatry. 2000; 68(5):615-21.
PMID: 10766893
PMC: 1736911.
DOI: 10.1136/jnnp.68.5.615.
"Z" flow hydrocephalus shunt, a new approach to the problem of hydrocephalus, the rationale behind its design and the initial results of pressure monitoring after "Z" flow shunt implantation.
Chhabra D, Agrawal G, Mittal P
Acta Neurochir (Wien). 1993; 121(1-2):43-7.
PMID: 8475806
DOI: 10.1007/BF01405181.
Is the slit ventricle syndrome always a slit ventricle syndrome?.
Di Rocco C
Childs Nerv Syst. 1994; 10(1):49-58.
PMID: 8194063
DOI: 10.1007/BF00313585.
Use of the distal double-slit valve system in children with hydrocephalus.
Hahn Y
Childs Nerv Syst. 1994; 10(2):99-103.
PMID: 8033170
DOI: 10.1007/BF00302772.
Slit-ventricle syndrome in shunt operated children.
Major O, Fedorcsak I, Sipos L, Hantos P, Konya E, Dobronyi I
Acta Neurochir (Wien). 1994; 127(1-2):69-72.
PMID: 7942186
DOI: 10.1007/BF01808550.
Importance of anti-siphon devices in the treatment of pediatric hydrocephalus.
Tokoro K, Chiba Y, Abe H, Tanaka N, Yamataki A, Kanno H
Childs Nerv Syst. 1994; 10(4):236-8.
PMID: 7923233
DOI: 10.1007/BF00301160.
Risks of using siphon-reducing devices.
Kremer P, Aschoff A, Kunze S
Childs Nerv Syst. 1994; 10(4):231-5.
PMID: 7923232
DOI: 10.1007/BF00301159.
The Delta Valve: a physiologic shunt system.
WATSON D
Childs Nerv Syst. 1994; 10(4):224-30.
PMID: 7923231
DOI: 10.1007/BF00301158.
Experiences with flow-regulated shunts (Orbis-Sigma valves) in cases of difficulty in managing hydrocephalus in children.
Serlo W
Childs Nerv Syst. 1995; 11(3):166-9.
PMID: 7773977
DOI: 10.1007/BF00570258.
Overdrainage and shunt technology. A critical comparison of programmable, hydrostatic and variable-resistance valves and flow-reducing devices.
Aschoff A, Kremer P, Benesch C, Fruh K, Klank A, Kunze S
Childs Nerv Syst. 1995; 11(4):193-202.
PMID: 7621479
DOI: 10.1007/BF00277653.
Pudenz antisiphon device tear as a cause of shunt malfunction.
Borowitz B, Ashkenazi E, Muallem N, Constantini S
Childs Nerv Syst. 1989; 5(5):330-1.
PMID: 2805005
DOI: 10.1007/BF00274524.