» Articles » PMID: 655703

Bacterial Dehalogenation of Halogenated Alkanes and Fatty Acids

Overview
Date 1978 May 1
PMID 655703
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Sewage samples dehalogenated 1,9-dichloronane, 1-chloroheptane, and 6-bromohexanoate, but an organism able to use 1,9-dichlorononane as the sole carbon source could not be isolated from these samples. Resting cells of Pseudomonas sp. grown on n-undecane, but not cells grown on glycerol, dehalogenated 1,9-dichlorononane in the presence of chloramphenicol. Resting cells of five other n-undecane-utilizing bacteria cleaved the halogen from dichlorononane and 6-bromohexanoate, and four dehalogenated 1-chloroheptane; however, none of these organisms used 1,9-dichlorononane for growth. By contrast, four benzoate-utilizing bacteria removed bromine from 6-bromohexanoate but had little or no activity on the chlorinated hydrocarbons. Incubation of sewage with 1,9-dichlorononane increased its subsequent capacity to dehalogenate 1,9-dichlorononane and 6-bromohexanoate but not 1-chloroheptane. A soil isolate could dehalogenate several dichloralkanes, three halogenated heptanes, and halogen-containing fatty acids. An enzyme preparation from this bacterium released chloride from 1,9-dichlorononane.

Citing Articles

Risk assessment of chlorinated paraffins in feed and food.

Schrenk D, Bignami M, Bodin L, Chipman J, Del Mazo J, Grasl-Kraupp B EFSA J. 2020; 18(3):e05991.

PMID: 32874241 PMC: 7447893. DOI: 10.2903/j.efsa.2020.5991.


Bacterial degradation of dichloromethane.

Brunner W, Staub D, Leisinger T Appl Environ Microbiol. 1980; 40(5):950-8.

PMID: 16345659 PMC: 291694. DOI: 10.1128/aem.40.5.950-958.1980.


Pseudomonas sp. strain 273, an aerobic alpha, omega-dichloroalkaneDegrading bacterium.

Wischnak C, Loffler F, Li J, Urbance J, Muller R Appl Environ Microbiol. 1998; 64(9):3507-11.

PMID: 9726906 PMC: 106756. DOI: 10.1128/AEM.64.9.3507-3511.1998.


Bromoalkane-degrading Pseudomonas strains.

Shochat E, Hermoni I, Cohen Z, Abeliovich A, Belkin S Appl Environ Microbiol. 1993; 59(5):1403-9.

PMID: 8517736 PMC: 182096. DOI: 10.1128/aem.59.5.1403-1409.1993.


Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications.

Fetzner S, Lingens F Microbiol Rev. 1994; 58(4):641-85.

PMID: 7854251 PMC: 372986. DOI: 10.1128/mr.58.4.641-685.1994.


References
1.
Hirsch P, Alexander M . Microbial decomposition of halogenated propionic and acetic acids. Can J Microbiol. 1960; 6:241-9. DOI: 10.1139/m60-028. View

2.
Goldman P . THE ENZYMATIC CLEAVAGE OF THE CARBON-FLUORINE BOND IN FLUOROACETATE. J Biol Chem. 1965; 240:3434-8. View

3.
Kearney P, Kaufman D, Beall M . Enzymatic dehalogenation of 2,2-dichloropropionate. Biochem Biophys Res Commun. 1964; 14:29-33. DOI: 10.1016/0006-291x(63)90205-5. View

4.
Little M, Williams P . A bacterial halidohydrolase. Its purification, some properties and its modification by specific amino acid reagents. Eur J Biochem. 1971; 21(1):99-109. DOI: 10.1111/j.1432-1033.1971.tb01445.x. View

5.
Goldman P, Milne G, Keister D . Carbon-halogen bond cleavage. 3. Studies on bacterial halidohrolases. J Biol Chem. 1968; 243(2):428-34. View