Jia D, Deng W, Hu P, Jiang W, Gu Y
Bioresour Bioprocess. 2024; 10(1):61.
PMID: 38647965
PMC: 10992200.
DOI: 10.1186/s40643-023-00682-z.
Kobayashi S, Kato J, Wada K, Takemura K, Kato S, Fujii T
Front Microbiol. 2022; 13:897066.
PMID: 35633713
PMC: 9133594.
DOI: 10.3389/fmicb.2022.897066.
Moon J, Jain S, Muller V, Basen M
Front Microbiol. 2020; 11:571736.
PMID: 33042077
PMC: 7522397.
DOI: 10.3389/fmicb.2020.571736.
Bhowmik A, Cloutier M, Ball E, Bruns M
AIMS Microbiol. 2019; 3(4):826-845.
PMID: 31294192
PMC: 6604955.
DOI: 10.3934/microbiol.2017.4.826.
Liu C, Li J, Zhang Y, Philip A, Shi E, Chi X
J Ind Microbiol Biotechnol. 2015; 42(9):1217-24.
PMID: 26153502
DOI: 10.1007/s10295-015-1646-1.
A reversible electron-bifurcating ferredoxin- and NAD-dependent [FeFe]-hydrogenase (HydABC) in Moorella thermoacetica.
Wang S, Huang H, Kahnt J, Thauer R
J Bacteriol. 2013; 195(6):1267-75.
PMID: 23316038
PMC: 3591994.
DOI: 10.1128/JB.02158-12.
Electron bifurcation involved in the energy metabolism of the acetogenic bacterium Moorella thermoacetica growing on glucose or H2 plus CO2.
Huang H, Wang S, Moll J, Thauer R
J Bacteriol. 2012; 194(14):3689-99.
PMID: 22582275
PMC: 3393501.
DOI: 10.1128/JB.00385-12.
Metagenomic evidence for h(2) oxidation and h(2) production by serpentinite-hosted subsurface microbial communities.
Brazelton W, Nelson B, Schrenk M
Front Microbiol. 2012; 2:268.
PMID: 22232619
PMC: 3252642.
DOI: 10.3389/fmicb.2011.00268.
Dissimilation of Carbon Monoxide to Acetic Acid by Glucose-Limited Cultures of Clostridium thermoaceticum.
Martin D, Misra A, Drake H
Appl Environ Microbiol. 1985; 49(6):1412-7.
PMID: 16346807
PMC: 241739.
DOI: 10.1128/aem.49.6.1412-1417.1985.
Effect of nitrate on the autotrophic metabolism of the acetogens Clostridium thermoautotrophicum and Clostridium thermoaceticum.
Frostl J, Seifritz C, Drake H
J Bacteriol. 1996; 178(15):4597-603.
PMID: 8755890
PMC: 178229.
DOI: 10.1128/jb.178.15.4597-4603.1996.
Adaptation of the acetogen Clostridium thermoautotrophicum to minimal medium.
Savage M, Drake H
J Bacteriol. 1986; 165(1):315-8.
PMID: 3941046
PMC: 214409.
DOI: 10.1128/jb.165.1.315-318.1986.
Catabolic enzymes of the acetogen Butyribacterium methylotrophicum grown on single-carbon substrates.
Kerby R, Zeikus J
J Bacteriol. 1987; 169(12):5605-9.
PMID: 3316188
PMC: 214000.
DOI: 10.1128/jb.169.12.5605-5609.1987.
Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum.
Savage M, Wu Z, Daniel S, Lundie Jr L, Drake H
Appl Environ Microbiol. 1987; 53(8):1902-6.
PMID: 3116936
PMC: 204022.
DOI: 10.1128/aem.53.8.1902-1906.1987.
Anaerobic catabolism of formate to acetate and CO2 by Butyribacterium methylotrophicum.
Kerby R, Zeikus J
J Bacteriol. 1987; 169(5):2063-8.
PMID: 3106329
PMC: 212091.
DOI: 10.1128/jb.169.5.2063-2068.1987.
Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui.
Daniel S, Hsu T, DEAN S, Drake H
J Bacteriol. 1990; 172(8):4464-71.
PMID: 2376565
PMC: 213276.
DOI: 10.1128/jb.172.8.4464-4471.1990.
Differential effects of sodium on hydrogen- and glucose-dependent growth of the acetogenic bacterium Acetogenium kivui.
Yang H, Drake H
Appl Environ Microbiol. 1990; 56(1):81-6.
PMID: 2310187
PMC: 183253.
DOI: 10.1128/aem.56.1.81-86.1990.