Lejars M, Kobayashi A, Hajnsdorf E
Microorganisms. 2021; 9(12).
PMID: 34946208
PMC: 8708148.
DOI: 10.3390/microorganisms9122608.
Mohanty B, Kushner S
Crit Rev Biochem Mol Biol. 2021; 57(1):48-72.
PMID: 34547957
PMC: 9973670.
DOI: 10.1080/10409238.2021.1968784.
Juttner M, Weiss M, Ostheimer N, Reglin C, Kern M, Knuppel R
Nucleic Acids Res. 2019; 48(4):2073-2090.
PMID: 31828323
PMC: 7038931.
DOI: 10.1093/nar/gkz1156.
Bechhofer D, Deutscher M
Crit Rev Biochem Mol Biol. 2019; 54(3):242-300.
PMID: 31464530
PMC: 6776250.
DOI: 10.1080/10409238.2019.1651816.
Iost I, Chabas S, Darfeuille F
Nucleic Acids Res. 2019; 47(11):5906-5921.
PMID: 31006803
PMC: 6582327.
DOI: 10.1093/nar/gkz258.
Enzymes Involved in Posttranscriptional RNA Metabolism in Gram-Negative Bacteria.
Mohanty B, Kushner S
Microbiol Spectr. 2018; 6(2).
PMID: 29676246
PMC: 5912700.
DOI: 10.1128/microbiolspec.RWR-0011-2017.
RNase III Processing of rRNA in the Lyme Disease Spirochete Borrelia burgdorferi.
Anacker M, Drecktrah D, LeCoultre R, Lybecker M, Samuels D
J Bacteriol. 2018; 200(13).
PMID: 29632096
PMC: 5996687.
DOI: 10.1128/JB.00035-18.
Distinct and redundant functions of three homologs of RNase III in the cyanobacterium Synechococcus sp. strain PCC 7002.
Gordon G, Cameron J, Pfleger B
Nucleic Acids Res. 2018; 46(4):1984-1997.
PMID: 29373746
PMC: 5829567.
DOI: 10.1093/nar/gky041.
RNA Sequencing Identifies New RNase III Cleavage Sites in and Reveals Increased Regulation of mRNA.
Gordon G, Cameron J, Pfleger B
mBio. 2017; 8(2).
PMID: 28351917
PMC: 5371410.
DOI: 10.1128/mBio.00128-17.
Random pseuoduridylation in vivo reveals critical region of Escherichia coli 23S rRNA for ribosome assembly.
Leppik M, Liiv A, Remme J
Nucleic Acids Res. 2017; 45(10):6098-6108.
PMID: 28334881
PMC: 5449589.
DOI: 10.1093/nar/gkx160.
Polyadenylation helps regulate functional tRNA levels in Escherichia coli.
Mohanty B, Maples V, Kushner S
Nucleic Acids Res. 2012; 40(10):4589-603.
PMID: 22287637
PMC: 3378859.
DOI: 10.1093/nar/gks006.
RNase G participates in processing of the 5'-end of 23S ribosomal RNA.
Song W, Lee M, Lee K
J Microbiol. 2011; 49(3):508-11.
PMID: 21717341
DOI: 10.1007/s12275-011-1198-7.
Analysis of Escherichia coli RNase E and RNase III activity in vivo using tiling microarrays.
Stead M, Marshburn S, Mohanty B, Mitra J, Pena Castillo L, Ray D
Nucleic Acids Res. 2010; 39(8):3188-203.
PMID: 21149258
PMC: 3082872.
DOI: 10.1093/nar/gkq1242.
Role of Escherichia coli YbeY, a highly conserved protein, in rRNA processing.
Davies B, Kohrer C, Jacob A, Simmons L, Zhu J, Aleman L
Mol Microbiol. 2010; 78(2):506-18.
PMID: 20807199
PMC: 2959132.
DOI: 10.1111/j.1365-2958.2010.07351.x.
Maturation of 23S rRNA in Bacillus subtilis in the absence of Mini-III.
Redko Y, Condon C
J Bacteriol. 2009; 192(1):356-9.
PMID: 19880604
PMC: 2798235.
DOI: 10.1128/JB.01096-09.
Novel mutations in ribosomal proteins L4 and L22 that confer erythromycin resistance in Escherichia coli.
Zaman S, Fitzpatrick M, Lindahl L, Zengel J
Mol Microbiol. 2007; 66(4):1039-50.
PMID: 17956547
PMC: 2229831.
DOI: 10.1111/j.1365-2958.2007.05975.x.
Ribosome biogenesis and the translation process in Escherichia coli.
Kaczanowska M, Ryden-Aulin M
Microbiol Mol Biol Rev. 2007; 71(3):477-94.
PMID: 17804668
PMC: 2168646.
DOI: 10.1128/MMBR.00013-07.
An ortholog of the Ro autoantigen functions in 23S rRNA maturation in D. radiodurans.
Chen X, Wurtmann E, Van Batavia J, Zybailov B, Washburn M, Wolin S
Genes Dev. 2007; 21(11):1328-39.
PMID: 17510283
PMC: 1877746.
DOI: 10.1101/gad.1548207.
Functional defects in transfer RNAs lead to the accumulation of ribosomal RNA precursors.
Slagter-Jager J, Puzis L, Gutgsell N, Belfort M, Jain C
RNA. 2007; 13(4):597-605.
PMID: 17293391
PMC: 1831865.
DOI: 10.1261/rna.319407.
RNase III cleavage demonstrates a long range RNA: RNA duplex element flanking the hepatitis C virus internal ribosome entry site.
Beguiristain N, Robertson H, Gomez J
Nucleic Acids Res. 2005; 33(16):5250-61.
PMID: 16170153
PMC: 1216335.
DOI: 10.1093/nar/gki822.