Beck C, Diner E, Kim J, Low D, Hayes C
Mol Microbiol. 2014; 93(2):276-90.
PMID: 24889811
PMC: 4107189.
DOI: 10.1111/mmi.12658.
Gil E, Bosch A, Lampe D, Lizcano J, Perales J, Danos O
PLoS One. 2013; 8(9):e73227.
PMID: 24039890
PMC: 3770610.
DOI: 10.1371/journal.pone.0073227.
Cuzon G, Naas T, Nordmann P
Antimicrob Agents Chemother. 2011; 55(11):5370-3.
PMID: 21844325
PMC: 3195030.
DOI: 10.1128/AAC.05202-11.
Finn J, Parks A, Peters J
J Bacteriol. 2007; 189(24):9122-5.
PMID: 17921297
PMC: 2168609.
DOI: 10.1128/JB.01451-07.
Aubert D, Naas T, Heritier C, Poirel L, Nordmann P
J Bacteriol. 2006; 188(18):6506-14.
PMID: 16952941
PMC: 1595497.
DOI: 10.1128/JB.00375-06.
Defining characteristics of Tn5 Transposase non-specific DNA binding.
Steiniger M, Adams C, Marko J, Reznikoff W
Nucleic Acids Res. 2006; 34(9):2820-32.
PMID: 16717287
PMC: 1464417.
DOI: 10.1093/nar/gkl179.
A bacterial genetic screen identifies functional coding sequences of the insect mariner transposable element Famar1 amplified from the genome of the earwig, Forficula auricularia.
Barry E, Witherspoon D, Lampe D
Genetics. 2004; 166(2):823-33.
PMID: 15020471
PMC: 1470758.
DOI: 10.1534/genetics.166.2.823.
Structural and functional characterization of IS679 and IS66-family elements.
Han C, Shiga Y, Tobe T, Sasakawa C, Ohtsubo E
J Bacteriol. 2001; 183(14):4296-304.
PMID: 11418571
PMC: 95320.
DOI: 10.1128/JB.183.14.4296-4304.2001.
Tn7 recognizes transposition target structures associated with DNA replication using the DNA-binding protein TnsE.
Peters J, Craig N
Genes Dev. 2001; 15(6):737-47.
PMID: 11274058
PMC: 312648.
DOI: 10.1101/gad.870201.
Isolation and characterization of Tn7 transposase gain-of-function mutants: a model for transposase activation.
Lu F, Craig N
EMBO J. 2000; 19(13):3446-57.
PMID: 10880457
PMC: 313929.
DOI: 10.1093/emboj/19.13.3446.
Hyperactive transposase mutants of the Himar1 mariner transposon.
Lampe D, Akerley B, Rubin E, Mekalanos J, Robertson H
Proc Natl Acad Sci U S A. 1999; 96(20):11428-33.
PMID: 10500193
PMC: 18050.
DOI: 10.1073/pnas.96.20.11428.
Gain-of-function mutations in TnsC, an ATP-dependent transposition protein that activates the bacterial transposon Tn7.
Stellwagen A, Craig N
Genetics. 1997; 145(3):573-85.
PMID: 9055068
PMC: 1207843.
DOI: 10.1093/genetics/145.3.573.
Tn7 transposition as a probe of cis interactions between widely separated (190 kilobases apart) DNA sites in the Escherichia coli chromosome.
Deboy R, Craig N
J Bacteriol. 1996; 178(21):6184-91.
PMID: 8892817
PMC: 178488.
DOI: 10.1128/jb.178.21.6184-6191.1996.
Overexpression of the Tn5 transposase in Escherichia coli results in filamentation, aberrant nucleoid segregation, and cell death: analysis of E. coli and transposase suppressor mutations.
Weinreich M, Yigit H, Reznikoff W
J Bacteriol. 1994; 176(17):5494-504.
PMID: 8071228
PMC: 196738.
DOI: 10.1128/jb.176.17.5494-5504.1994.
DNA requirements at the bacteriophage G4 origin of complementary-strand DNA synthesis.
Lambert P, Waring D, Wells R, Reznikoff W
J Virol. 1986; 58(2):450-8.
PMID: 3754589
PMC: 252931.
DOI: 10.1128/JVI.58.2.450-458.1986.
Determinants of membrane protein topology.
Boyd D, Manoil C, Beckwith J
Proc Natl Acad Sci U S A. 1987; 84(23):8525-9.
PMID: 3317413
PMC: 299577.
DOI: 10.1073/pnas.84.23.8525.
Transposition of IS50L activates downstream genes.
Kendrick K, Reznikoff W
J Bacteriol. 1988; 170(4):1965-8.
PMID: 2832393
PMC: 211060.
DOI: 10.1128/jb.170.4.1965-1968.1988.
Transcriptional occlusion of transposon targets.
Casadesus J, Roth J
Mol Gen Genet. 1989; 216(2-3):204-9.
PMID: 2546037
DOI: 10.1007/BF00334357.
Analysis of protein localization by use of gene fusions with complementary properties.
Manoil C
J Bacteriol. 1990; 172(2):1035-42.
PMID: 2153653
PMC: 208534.
DOI: 10.1128/jb.172.2.1035-1042.1990.
A branching-process model for the evolution of transposable elements incorporating selection.
Basten C, Moody M
J Math Biol. 1991; 29(8):743-61.
PMID: 1658178
DOI: 10.1007/BF00160190.