Meng H, Feng J, Bai T, Jian Z, Chen Y, Wu G
DNA Res. 2020; 27(1).
PMID: 32271875
PMC: 7315354.
DOI: 10.1093/dnares/dsaa004.
Cheung S, Manhas S, Measday V
Mob DNA. 2018; 9:14.
PMID: 29713390
PMC: 5911963.
DOI: 10.1186/s13100-018-0119-2.
Soller M, Beckmann J
Theor Appl Genet. 2013; 74(3):369-78.
PMID: 24241675
DOI: 10.1007/BF00274720.
Nyswaner K, Checkley M, Yi M, Stephens R, Garfinkel D
Genetics. 2008; 178(1):197-214.
PMID: 18202368
PMC: 2206071.
DOI: 10.1534/genetics.107.082602.
Mou Z, Kenny A, Curcio M
Genetics. 2006; 172(4):2157-67.
PMID: 16415356
PMC: 1456361.
DOI: 10.1534/genetics.105.054072.
Evolution in Saccharomyces cerevisiae: identification of mutations increasing fitness in laboratory populations.
Blanc V, Adams J
Genetics. 2003; 165(3):975-83.
PMID: 14668358
PMC: 1462841.
DOI: 10.1093/genetics/165.3.975.
Preferential accessibility of the yeast his3 promoter is determined by a general property of the DNA sequence, not by specific elements.
Mai X, Chou S, Struhl K
Mol Cell Biol. 2000; 20(18):6668-76.
PMID: 10958664
PMC: 86173.
DOI: 10.1128/MCB.20.18.6668-6676.2000.
Host genes that affect the target-site distribution of the yeast retrotransposon Ty1.
Huang H, Hong J, Burck C, Liebman S
Genetics. 1999; 151(4):1393-407.
PMID: 10101165
PMC: 1460544.
DOI: 10.1093/genetics/151.4.1393.
Tempo and mode of Ty element evolution in Saccharomyces cerevisiae.
Jordan I, McDonald J
Genetics. 1999; 151(4):1341-51.
PMID: 10101161
PMC: 1460554.
DOI: 10.1093/genetics/151.4.1341.
Influences of histone stoichiometry on the target site preference of retrotransposons Ty1 and Ty2 in Saccharomyces cerevisiae.
Rinckel L, Garfinkel D
Genetics. 1996; 142(3):761-76.
PMID: 8849886
PMC: 1207017.
DOI: 10.1093/genetics/142.3.761.
SPT13 (GAL11) of Saccharomyces cerevisiae negatively regulates activity of the MCM1 transcription factor in Ty1 elements.
Yu G, Fassler J
Mol Cell Biol. 1993; 13(1):63-71.
PMID: 8380229
PMC: 358885.
DOI: 10.1128/mcb.13.1.63-71.1993.
Involvement of SRE element of Ty1 transposon in TEC1-dependent transcriptional activation.
Laloux I, Jacobs E, Dubois E
Nucleic Acids Res. 1994; 22(6):999-1005.
PMID: 8152932
PMC: 307921.
DOI: 10.1093/nar/22.6.999.
Role of Saccharomyces cerevisiae Rap1 protein in Ty1 and Ty1-mediated transcription.
Gray W, Fassler J
Gene Expr. 1993; 3(3):237-51.
PMID: 8019126
PMC: 6081617.
Genetic footprinting: a genomic strategy for determining a gene's function given its sequence.
Smith V, Botstein D, Brown P
Proc Natl Acad Sci U S A. 1995; 92(14):6479-83.
PMID: 7604017
PMC: 41541.
DOI: 10.1073/pnas.92.14.6479.
Identification of two genes coding for the translation elongation factor EF-1 alpha of S. cerevisiae.
Schirmaier F, Philippsen P
EMBO J. 1984; 3(13):3311-5.
PMID: 6396088
PMC: 557854.
DOI: 10.1002/j.1460-2075.1984.tb02295.x.
A minor class of 5S rRNA genes in Saccharomyces cerevisiae X2180-1B, one member of which lies adjacent to a Ty transposable element.
Piper P, Lockheart A, Patel N
Nucleic Acids Res. 1984; 12(10):4083-96.
PMID: 6328410
PMC: 318818.
DOI: 10.1093/nar/12.10.4083.
Ty-mediated gene expression of the LYS2 and HIS4 genes of Saccharomyces cerevisiae is controlled by the same SPT genes.
Simchen G, Winston F, Styles C, Fink G
Proc Natl Acad Sci U S A. 1984; 81(8):2431-4.
PMID: 6326126
PMC: 345074.
DOI: 10.1073/pnas.81.8.2431.
Identification of regulatory regions within the Ty1 transposable element that regulate iso-2-cytochrome c production in the CYC7-H2 yeast mutant.
Errede B, Cardillo T, Teague M, Sherman F
Mol Cell Biol. 1984; 4(7):1393-401.
PMID: 6095068
PMC: 368922.
DOI: 10.1128/mcb.4.7.1393-1401.1984.
An electrophoretic karyotype for yeast.
Carle G, Olson M
Proc Natl Acad Sci U S A. 1985; 82(11):3756-60.
PMID: 3889913
PMC: 397866.
DOI: 10.1073/pnas.82.11.3756.
Acceptor sites for retroviral integrations map near DNase I-hypersensitive sites in chromatin.
Vijaya S, Steffen D, Robinson H
J Virol. 1986; 60(2):683-92.
PMID: 3490582
PMC: 288942.
DOI: 10.1128/JVI.60.2.683-692.1986.