Fuentes-Verdugo E, Lopez-Tolsa G, Pellon R, Miguens M
Psychopharmacology (Berl). 2021; 239(5):1359-1372.
PMID: 34436650
PMC: 9110535.
DOI: 10.1007/s00213-021-05952-2.
Gibula-Tarlowska E, Wydra K, Kotlinska J
Pharmaceutics. 2020; 12(7).
PMID: 32660138
PMC: 7407502.
DOI: 10.3390/pharmaceutics12070654.
Abela A, Rahbarnia A, Wood S, Le A, Fletcher P
Psychopharmacology (Berl). 2019; 236(6):1875-1886.
PMID: 30694374
DOI: 10.1007/s00213-019-5171-1.
Assari S, Mistry R, Caldwell C, Zimmerman M
Front Psychol. 2018; 9:2135.
PMID: 30505287
PMC: 6250838.
DOI: 10.3389/fpsyg.2018.02135.
Pacheco-Colon I, Limia J, Gonzalez R
Psychol Addict Behav. 2018; 32(5):497-507.
PMID: 29963875
PMC: 6062456.
DOI: 10.1037/adb0000380.
Salience attribution and its relationship to cannabis-induced psychotic symptoms.
Bloomfield M, Mouchlianitis E, Morgan C, Freeman T, Curran H, Roiser J
Psychol Med. 2016; 46(16):3383-3395.
PMID: 27628967
PMC: 5122315.
DOI: 10.1017/S0033291716002051.
Adolescent Δ(9)-Tetrahydrocannabinol Exposure Alters WIN55,212-2 Self-Administration in Adult Rats.
Scherma M, Dessi C, Muntoni A, Lecca S, Satta V, Luchicchi A
Neuropsychopharmacology. 2015; 41(5):1416-26.
PMID: 26388146
PMC: 4793126.
DOI: 10.1038/npp.2015.295.
Hormonal status and age differentially affect tolerance to the disruptive effects of delta-9-tetrahydrocannabinol (Δ(9)-THC) on learning in female rats.
Winsauer P, Filipeanu C, Weed P, Sutton J
Front Pharmacol. 2015; 6:133.
PMID: 26191005
PMC: 4488627.
DOI: 10.3389/fphar.2015.00133.
The link between dopamine function and apathy in cannabis users: an [18F]-DOPA PET imaging study.
Bloomfield M, Morgan C, Kapur S, Curran H, Howes O
Psychopharmacology (Berl). 2014; 231(11):2251-9.
PMID: 24696078
DOI: 10.1007/s00213-014-3523-4.
Chronic administration during early adulthood does not alter the hormonally-dependent disruptive effects of delta-9-tetrahydrocannabinol (Δ9-THC) on complex behavior in female rats.
Winsauer P, Sutton J
Pharmacol Biochem Behav. 2013; 117:118-27.
PMID: 24361784
PMC: 3957192.
DOI: 10.1016/j.pbb.2013.12.014.
Long-term behavioral and biochemical effects of an ultra-low dose of Δ9-tetrahydrocannabinol (THC): neuroprotection and ERK signaling.
Fishbein M, Gov S, Assaf F, Gafni M, Keren O, Sarne Y
Exp Brain Res. 2012; 221(4):437-48.
PMID: 22821081
DOI: 10.1007/s00221-012-3186-5.
Long-term behavioral and pharmacodynamic effects of delta-9-tetrahydrocannabinol in female rats depend on ovarian hormone status.
Winsauer P, Daniel J, Filipeanu C, Leonard S, Hulst J, Rodgers S
Addict Biol. 2010; 16(1):64-81.
PMID: 21158010
PMC: 3057667.
DOI: 10.1111/j.1369-1600.2010.00227.x.
Chronic Delta9-tetrahydrocannabinol during adolescence increases sensitivity to subsequent cannabinoid effects in delayed nonmatch-to-position in rats.
Wiley J, Burston J
Pharmacol Biochem Behav. 2009; 94(4):516-23.
PMID: 19941884
PMC: 2824533.
DOI: 10.1016/j.pbb.2009.11.006.
Oral THC produces minimal behavioral alterations in preadolescent rats.
Dow-Edwards D, Zhao N
Neurotoxicol Teratol. 2008; 30(5):385-9.
PMID: 18467074
PMC: 2572719.
DOI: 10.1016/j.ntt.2008.03.062.
Depressive symptoms in adolescents: associations with white matter volume and marijuana use.
Medina K, Nagel B, Park A, McQueeny T, Tapert S
J Child Psychol Psychiatry. 2007; 48(6):592-600.
PMID: 17537075
PMC: 2269707.
DOI: 10.1111/j.1469-7610.2007.01728.x.
Hippocampal neurotoxicity of Delta9-tetrahydrocannabinol.
Chan G, Hinds T, Impey S, Storm D
J Neurosci. 1998; 18(14):5322-32.
PMID: 9651215
PMC: 6793471.
Residual effects of chronic cannabis treatment on behavior in mature rats.
Stiglick A, Kalant H
Psychopharmacology (Berl). 1985; 85(4):436-9.
PMID: 3927340
DOI: 10.1007/BF00429660.
Failure of acute and chronic administration of delta 9-tetrahydrocannabinol to affect the repeated acquisition of serial position response in pigeons.
McMillan D
Pavlov J Biol Sci. 1988; 23(2):57-66.
PMID: 2838797
DOI: 10.1007/BF02995656.