» Articles » PMID: 6280634

Electron Transport-linked Proton Translocation at Nitrite Reduction in Campylobacter Sputorum Subspecies Bubulus

Overview
Journal Arch Microbiol
Specialty Microbiology
Date 1982 Mar 1
PMID 6280634
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Campylobacter sputorum subspecies bubulus contains a membrane-bound nitrite reductase which catalyses the six-electron reduction of nitrite to ammonia. Formate and L-lactate are used as hydrogen donors. Cells of C. sputorum grown with nitrate or nitrite contain cytochromes of the b- and c-type and a carbon monoxide-binding cytochrome c. In addition, a special membrane-bound carbon monoxide-binding pigment is found. Nitrite reduction with formate or L-lactate as a hydrogen donor is strongly inhibited by 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO). Nitrite reduction by bacterial suspensions with lactate as a hydrogen donor is strongly inhibited by carbonylcyanide-m-chlorophenylhydrazone (CCCP) whereas nitrite reduction with formate as a hydrogen donor is not inhibited at all. Leads to H+/O values and leads to H+/NO-2 values were measured with ascorbate + N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), formate (in the absence and presence of carbonic anhydrase) and L-lactate as a hydrogen donor. The results are summarized in a scheme for electron transport from formate or lactate to oxygen or nitrite which shows a periplasmic orientation of formate dehydrogenase and nitrite reductase and a cytoplasmic orientation of lactate dehydrogenase and oxygen reduction, and which shows proton translocation with a leads to H+/2e value of 2.0. The leads to H+/O and leads to H+/NO-2 values predicted by this scheme are in good agreement with the experimental values.

Citing Articles

Fermentative Bacteria Influence the Competition between Denitrifiers and DNRA Bacteria.

van den Berg E, Elisario M, Kuenen J, Kleerebezem R, van Loosdrecht M Front Microbiol. 2017; 8:1684.

PMID: 28928722 PMC: 5591879. DOI: 10.3389/fmicb.2017.01684.


Respiration and growth of Shewanella oneidensis MR-1 using vanadate as the sole electron acceptor.

Carpentier W, Smet L, Van Beeumen J, Brige A J Bacteriol. 2005; 187(10):3293-301.

PMID: 15866913 PMC: 1111990. DOI: 10.1128/JB.187.10.3293-3301.2005.


Aerobic denitrification--old wine in new bottles?.

Robertson L, Kuenen J Antonie Van Leeuwenhoek. 1984; 50(5-6):525-44.

PMID: 6397132 DOI: 10.1007/BF02386224.


Localization of hydrogenase and nitrate reductase in Campylobacter sputorum subsp. bubulus.

de Vries W, van Berchum H, Stouthamer A Antonie Van Leeuwenhoek. 1984; 50(1):63-73.

PMID: 6372687 DOI: 10.1007/BF00404908.


Putative signal peptide on the small subunit of the periplasmic hydrogenase from Desulfovibrio vulgaris.

Prickril B, Czechowski M, Przybyla A, Peck Jr H, LeGall J J Bacteriol. 1986; 167(2):722-5.

PMID: 3525521 PMC: 212951. DOI: 10.1128/jb.167.2.722-725.1986.


References
1.
Scholes P, Smith L . Composition and properties of the membrane-bound respiratory chain system of Micrococcus denitrificans. Biochim Biophys Acta. 1968; 153(2):363-75. DOI: 10.1016/0005-2728(68)90081-9. View

2.
Wikstrom M, Krab K . Proton-pumping cytochrome c oxidase. Biochim Biophys Acta. 1979; 549(2):177-22. DOI: 10.1016/0304-4173(79)90014-4. View

3.
Boogerd F, van Verseveld H, Stouthamer A . Respiration-driven proton translocation with nitrite and nitrous oxide in Paracoccus denitrificans. Biochim Biophys Acta. 1981; 638(2):181-91. DOI: 10.1016/0005-2728(81)90226-7. View

4.
Steenkamp D, Peck Jr H . Proton translocation associated with nitrite respiration in Desulfovibrio desulfuricans. J Biol Chem. 1981; 256(11):5450-8. View

5.
Laanbroek H, Veldkamp H . Growth yield and energy generation in anaerobically-grown Campylobacter spec. Arch Microbiol. 1979; 120(1):47-51. DOI: 10.1007/BF00413272. View