Weawsiangsang S, Rattanachak N, Jongjitvimol T, Jaifoo T, Charoensit P, Viyoch J
Int J Mol Sci. 2023; 24(18).
PMID: 37762218
PMC: 10530414.
DOI: 10.3390/ijms241813914.
Kaleta M, Sauer K
J Bacteriol. 2023; 205(5):e0000423.
PMID: 37098964
PMC: 10210980.
DOI: 10.1128/jb.00004-23.
Barros C, Devlin H, Hiebner D, Vitale S, Quinn L, Casey E
Nanoscale Adv. 2022; 2(4):1694-1708.
PMID: 36132306
PMC: 9418611.
DOI: 10.1039/d0na00041h.
Scribani Rossi C, Barrientos-Moreno L, Paone A, Cutruzzola F, Paiardini A, Espinosa-Urgel M
Int J Mol Sci. 2022; 23(8).
PMID: 35457206
PMC: 9028604.
DOI: 10.3390/ijms23084386.
Price M, Deutschbauer A, Arkin A
PLoS Genet. 2022; 18(4):e1010156.
PMID: 35417463
PMC: 9007349.
DOI: 10.1371/journal.pgen.1010156.
Systems Analysis of NADH Dehydrogenase Mutants Reveals Flexibility and Limits of Pseudomonas taiwanensis VLB120's Metabolism.
Nies S, Dinger R, Chen Y, Wordofa G, Kristensen M, Schneider K
Appl Environ Microbiol. 2020; 86(11).
PMID: 32245760
PMC: 7237778.
DOI: 10.1128/AEM.03038-19.
Effects of a small, volatile bacterial molecule on Pseudomonas aeruginosa bacteria using whole cell high-resolution magic angle spinning nuclear magnetic resonance spectroscopy and genomics.
Righi V, Constantinou C, Kesarwani M, Rahme L, Tzika A
Int J Mol Med. 2018; 42(4):2129-2136.
PMID: 30015850
PMC: 6108874.
DOI: 10.3892/ijmm.2018.3760.
Use of response surface method for maximizing the production of arginine deiminase by .
Patil M, Shinde K, Patel G, Chisti Y, Banerjee U
Biotechnol Rep (Amst). 2017; 10:29-37.
PMID: 28352521
PMC: 5070923.
DOI: 10.1016/j.btre.2016.03.002.
Dynamic Response of Pseudomonas putida S12 to Sudden Addition of Toluene and the Potential Role of the Solvent Tolerance Gene trgI.
Volkers R, Snoek L, Ruijssenaars H, de Winde J
PLoS One. 2015; 10(7):e0132416.
PMID: 26181384
PMC: 4504468.
DOI: 10.1371/journal.pone.0132416.
Live-cell high resolution magic angle spinning magnetic resonance spectroscopy for analysis of metabolomics.
Righi V, Constantinou C, Kesarwani M, Rahme L, Tzika A
Biomed Rep. 2014; 1(5):707-712.
PMID: 24649014
PMC: 3917020.
DOI: 10.3892/br.2013.148.
New insights on the reorganization of gene transcription in Pseudomonas putida KT2440 at elevated pressure.
Follonier S, F Escapa I, Fonseca P, Henes B, Panke S, Zinn M
Microb Cell Fact. 2013; 12:30.
PMID: 23537069
PMC: 3621253.
DOI: 10.1186/1475-2859-12-30.
P. aeruginosa Biofilms in CF Infection.
Wagner V, Iglewski B
Clin Rev Allergy Immunol. 2008; 35(3):124-34.
PMID: 18509765
DOI: 10.1007/s12016-008-8079-9.
Two-pronged survival strategy for the major cystic fibrosis pathogen, Pseudomonas aeruginosa, lacking the capacity to degrade nitric oxide during anaerobic respiration.
Yoon S, Karabulut A, Lipscomb J, Hennigan R, Lymar S, Groce S
EMBO J. 2007; 26(15):3662-72.
PMID: 17627281
PMC: 1949006.
DOI: 10.1038/sj.emboj.7601787.
Identification of Pseudomonas aeruginosa genes involved in virulence and anaerobic growth.
Filiatrault M, Picardo K, Ngai H, Passador L, Iglewski B
Infect Immun. 2006; 74(7):4237-45.
PMID: 16790798
PMC: 1489737.
DOI: 10.1128/IAI.02014-05.
N-Succinylated intermediates in an arginine catabolic pathway of Pseudomonas aeruginosa.
Jann A, Stalon V, Wauven C, Leisinger T, Haas D
Proc Natl Acad Sci U S A. 1986; 83(13):4937-41.
PMID: 16593724
PMC: 323859.
DOI: 10.1073/pnas.83.13.4937.
Proteomic analysis reveals the participation of energy- and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene.
Segura A, Godoy P, van Dillewijn P, Hurtado A, Arroyo N, Santacruz S
J Bacteriol. 2005; 187(17):5937-45.
PMID: 16109935
PMC: 1196166.
DOI: 10.1128/JB.187.17.5937-5945.2005.
Effect of anaerobiosis and nitrate on gene expression in Pseudomonas aeruginosa.
Filiatrault M, Wagner V, Bushnell D, Haidaris C, Iglewski B, Passador L
Infect Immun. 2005; 73(6):3764-72.
PMID: 15908409
PMC: 1111847.
DOI: 10.1128/IAI.73.6.3764-3772.2005.
Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation.
Eschbach M, Schreiber K, Trunk K, Buer J, Jahn D, Schobert M
J Bacteriol. 2004; 186(14):4596-604.
PMID: 15231792
PMC: 438635.
DOI: 10.1128/JB.186.14.4596-4604.2004.
Functional analysis and regulation of the divergent spuABCDEFGH-spuI operons for polyamine uptake and utilization in Pseudomonas aeruginosa PAO1.
Lu C, Itoh Y, Nakada Y, Jiang Y
J Bacteriol. 2002; 184(14):3765-73.
PMID: 12081945
PMC: 135167.
DOI: 10.1128/JB.184.14.3765-3773.2002.
Molecular characterization and regulation of the aguBA operon, responsible for agmatine utilization in Pseudomonas aeruginosa PAO1.
Nakada Y, Jiang Y, Nishijyo T, Itoh Y, Lu C
J Bacteriol. 2001; 183(22):6517-24.
PMID: 11673419
PMC: 95480.
DOI: 10.1128/JB.183.22.6517-6524.2001.